Composition of functions and inverse functions

Consider you have two functions f and g, and you enter a number x to g. Then, enter its output $g(x)$ to f. Then, as a final result, you will get $f(g(x))$. However, you can regard this as a single function; if you enter a number x, you get $f(g(x))$. If we call this function $h(x)$, we have $h(x)=f(g(x))$. This is the concept of "composition of functions." Mathematicians often express $h(x)=f(g(x))$ as $h=f \circ g$. Notice also that you first apply g then f, but you write this in the inverse order, namely $h=f \circ g$. This may be done to match the order $f(g(x))=f \circ g(x)$
(Problem 1. Let $f(x)=x^{2}-6 x$, and $g(x)=x+3$. Find $f \circ g$.)
Now, suppose you have a function h and you enter a number x to h. Then, a certain number $h(x)$ will pop out. Suppose you want to reverse the function h; if $h(x)$ is entered, you get x. We call such a function an "inverse function." The inverse function of h is denoted as h^{-1}. For example, we have $h\left(h^{-1}(x)\right)=x$ by definition. However, we have to be careful when dealing with the inverse function. For example, consider $h(x)=x^{2}$. Then, we know that there are two inverse functions $h^{-1}(x)=\sqrt{x}$ and $h^{-1}(x)=-\sqrt{x}$. When defining the inverse function, we have to manually choose which one we want.

Problem 2. Let $f(x)=\sqrt{x}-3$. Find $f^{-1}(x)$.
Problem 3. Let $f(x)=x-3$ and $g(x)=2 x+4$. Find $f \circ g$ and $g \circ f$.
Problem 4. Let $f \circ g(x)=x^{2}-1$, and $g(x)=x-3$. Find $f(x) .\left(\right.$ Hint $\left.^{1}\right)$
Problem 5. Let $f \circ g(x)=x^{2}-4 x+8$, and $f(x)=x^{2}+4$. Find all possible $g(x)$. $\left(\right.$ Hint $\left.^{2}\right)$

Summary

- If $h(x)=f(g(x)), h=f \circ g$. This is the composition of two functions.
- The inverse function of f is denoted by f^{-1}. It is defined by $f\left(f^{-1}(x)\right)=$ x.

[^0]
[^0]: ${ }^{1}$ Use $f \circ g \circ g^{-1}=f$.
 ${ }^{2}$ Notice $f(g(x))=(x-2)^{2}+4=(2-x)^{2}+4$.

