Composition of functions and inverse functions

Consider you have two functions f and g, and you enter a number x to g. Then, enter its output g(x) to f. Then, as a final result, you will get f(g(x)). However, you can regard this as a single function; if you enter a number x, you get f(q(x)). If we call this function h(x), we have h(x) = f(q(x)). This is the concept of "composition of functions." Mathematicians often express h(x) = f(g(x)) as $h = f \circ g$. Notice also that you first apply g then f, but you write this in the inverse order, namely $h = f \circ g$. This may be done to match the order $f(q(x)) = f \circ q(x)$

(Problem 1. Let $f(x) = x^2 - 6x$, and g(x) = x + 3. Find $f \circ g$.)

Now, suppose you have a function h and you enter a number x to h. Then, a certain number h(x) will pop out. Suppose you want to reverse the function h; if h(x) is entered, you get x. We call such a function an "inverse function." The inverse function of h is denoted as h^{-1} . For example, we have $h(h^{-1}(x)) = x$ by definition. However, we have to be careful when dealing with the inverse function. For example, consider $h(x) = x^2$. Then, we know that there are two inverse functions $h^{-1}(x) = \sqrt{x}$ and $h^{-1}(x) = -\sqrt{x}$. When defining the inverse function, we have to manually choose which one we want.

Problem 2. Let $f(x) = \sqrt{x} - 3$. Find $f^{-1}(x)$.

Problem 3. Let f(x) = x - 3 and g(x) = 2x + 4. Find $f \circ g$ and $g \circ f$. **Problem 4.** Let $f \circ g(x) = x^2 - 1$, and g(x) = x - 3. Find f(x). (Hint¹) **Problem 5.** Let $f \circ g(x) = x^2 - 4x + 8$, and $f(x) = x^2 + 4$. Find all possible q(x). (Hint²)

Summary

- If $h(x) = f(g(x)), h = f \circ g$. This is the composition of two functions.
- The inverse function of f is denoted by f^{-1} . It is defined by $f(f^{-1}(x)) =$ x.

¹Use $f \circ g \circ g^{-1} = f$. ²Notice $f(g(x)) = (x-2)^2 + 4 = (2-x)^2 + 4$.