Congruence of triangle

According to Wikipedia, two figures are "congruent," if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. In other words, two figures on a piece of paper are congruent, if they can be cut out and be overlapped each other completely. Turning the paper over is allowed. Two figures are "similar," if they have the same shape, of if one has the same shape as the mirror image of the other. See the figure below.

The two left triangles are congruent, and the third is similar to both of them. However, the last one is neither congruent nor similar to the other ones.

Problem 1. If two figures are congruent, are they similar as well? Explain.
There are simple ways to check whether two triangles are congruent. We list three of them.

First, SSS (Side-Side-Side). See Fig. 1. If the three sides of $\triangle A B C$ (i.e. \triangle here

Figure 1: SSS

Figure 2: SAS

Figure 3: ASA
means triangle) have the same lengths as the three sides of $\triangle D E F, \triangle A B C$ and $\triangle D E F$ are congruent. It is easy to see this, if you think about how you draw a triangle when you are provided with the lengths of three sides. You are guaranteed to draw the same triangle once you are provided with the same three sides. Notice that the congruency implies $\triangle D E F$ have the same angles as the three angles of $\triangle A B C .(\angle A=\angle D, \angle B=\angle E, \angle C=\angle F)$

Second, SAS (Side-Angle-Side). See Fig. 2. If two sides of $\triangle A B C$ and the angle between the two sides are the same as the two sides of $\triangle D E F$ and the angle between the two sides, $\triangle A B C$ and $\triangle D E F$ are congruent. Again, it is easy to see this, if you think about how you draw a triangle when you are provided with SAS. Again, the congruency of the two triangles imply that all of the angles and sides of $\triangle D E F$ are the same as $\triangle A B C$, not just the ones that we initially required. (i.e., we additionally obtain $\overline{A C}=\overline{D F}, \angle A=\angle D, \angle C=\angle F$.)

Third, ASA (Angle-Side-Angle). See Fig. 3. If one side of $\triangle A B C$ and the two angles adjacent to it are same as one side of $\triangle D E F$ and the two angles adjacent to it, $\triangle A B C$ and $\triangle D E F$ are congruent. Again, it is easy to see this, if you think about how you draw a triangle when you are provided with ASA. Again, the congruency implies that we additionally obtain $\overline{A C}=\overline{D F}, \overline{B C}=\overline{E F}$, and $\angle C=\angle F$. Now, we will apply the congruency of triangle to parallelogram. See Fig. 4. A parallelogram $A B C D$ satisfies the following four properties:

Figure 4: a parallelogram

Figure 5: adding a line $\overline{A C}$

- $\overline{A B}=\overline{C D}$
- $\overline{A D}=\overline{B C}$
- $\overline{A B}$ is parallel to $\overline{C D}$.
- $\overline{A D}$ is parallel to $\overline{B C}$.

Problem 1. Some of the properties above are redundant. You will be asked to show that the third and fourth properties are automatically satisfied, if the first and second properties are satisfied. To this end, See Fig. 5. We add an additional line $\overline{A C}$, which immensely helps our analysis. Assuming $\overline{A B}=\overline{C D}$ and $\overline{A D}=\overline{C B}$, show that $\angle C A B=\angle A C D$, which implies the third property and $\angle D A C=\angle B C A$, which implies the fourth property. (Hint ${ }^{1}$)

Problem 2. You will be asked to show that the first and the second properties are automatically satisfied, if the third and fourth properties are satisfied. Assuming the third property, which implies $\angle C A B=\angle A C D$, and the fourth property, which implies $\angle D A C=$ $\angle B C A$, show that $\overline{A B}=\overline{C D}$, and $\overline{A D}=\overline{B C}$.

Problem 3. You will be asked to show that the first and the third properties are automatically satisfied, if the second and fourth properties are satisfied. Assuming $\overline{A D}=$ $\overline{B C}$ and the fourth property, which implies $\angle D A C=\angle B C A$, show that $\overline{A B}=\overline{C D}$ and $\angle C A B=\angle A C D$, which implies the third property.

Figure 6: the diagonals of a parallelogram bisect each other

[^0]Problem 4. In this problem, you will be asked to show that the diagonals of a parallelogram bisect each other. See Fig. 6. Show that $\overline{A E}=\overline{C E}$ and $\overline{B E}=\overline{D E}$. (Hint ${ }^{2}$)

Summary

- Two figures are "congruent," if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.
- Two figures are "similar," if they have the same shape, of if one has the same shape as the mirror image of the other.
- Two triangles are congruent if one of the following three criteria is satisfied: SSS (Side-Side-Side), SAS (Side-Angle-Side), ASA (Angle-Side-Angle).
(The figure is from https://commons.wikimedia.org/wiki/File:Congruent_non-congruent_ triangles.svg)

[^1]
[^0]: ${ }^{1}$ Show that $\triangle A B C$ is congruent to $\triangle C A D$.

[^1]: ${ }^{2}$ Show that $\triangle A D E$ is congruent to $\triangle C B E$.

