Exponents

Consider the following quantity:

$$
\begin{equation*}
3 \times 3 \times 3 \times 3 \times 3 \times 3 \tag{1}
\end{equation*}
$$

It is too long: is there a simpler way to express this? There is. We write:

$$
\begin{equation*}
3^{6}=3 \times 3 \times 3 \times 3 \times 3 \times 3 \tag{2}
\end{equation*}
$$

where 6 here denotes the fact that 3 is multiplied 6 times. Here, we call 3 the "base" and 6 the "exponent." We pronounce 3^{6} as " 3 to the power of 6."

Problem 1. Express the followings using exponent notation.

$$
5 \times 5 \times 5=? \quad(-2) \times(-2) \times(-2) \times(-2)=?
$$

In mathematics, science and engineering we often meet cases in which the exponent is 2 or 3 , so we have special ways to pronounce such expressions. For example, instead of pronouncing 5^{2} as " 5 to the power of 2 ", we often pronounce it as " 5 squared." Similarly, we often pronounce 5 as " 5 cubed."

Problem 2. What is 5 squared? What is 2 cubed?
Problem 3. Evaluate the following.

$$
3^{4}=?, \quad(-2)^{3}=?, \quad\left(\frac{1}{3}\right)^{2}=?
$$

Problem 4. In this problem, we will revisit the rule that we have learned in the last article. Notice that $(-1)^{2}=1,(-1)^{3}=-1,(-1)^{4}=1$, $(-1)^{5}=-1$ and so on. From this pattern, evaluate $(-1)^{2016}$ and $(-1)^{4349}$.

Problem 5. Evaluate the following.

$$
\begin{equation*}
10^{2}=?, \quad 10^{3}=?, \quad 10^{4}=? \tag{3}
\end{equation*}
$$

If you correctly solved this problem you will see that 10^{n} has 1 followed by n numbers of 0 . For example, 10^{4} is 10,000 as it must be 1 followed by 4 numbers of 0 .

Problem 6. What is 10^{8} ?
Can an exponent be a negative number? For example, what is 2^{-3} ? At first glance, this seems to be a senseless question, as we cannot certainly
multiply a number negative times. However, it turns out that we can assign a value to a negative exponent consistently. To this end, we need to understand some properties of exponents first.

Suppose you want to calculate $5^{4} \times 5^{3}$. We have:

$$
\begin{align*}
5^{4} \times 5^{3} & =(5 \times 5 \times 5 \times 5) \times(5 \times 5 \times 5) \tag{4}\\
& =5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \tag{5}\\
& =5^{7} \tag{6}
\end{align*}
$$

In thinking how you have gotten the exponent 7 , you will see that you just summed 4 and 3 . Therefore, more generally, we can write:

$$
\begin{equation*}
a^{b} \times a^{c}=a^{b+c} \tag{7}
\end{equation*}
$$

Similarly, suppose you want to calculate $5^{5} \div 5^{2}$. We have:

$$
\begin{align*}
\frac{5^{5}}{5^{2}} & =\frac{5 \times 5 \times 5 \times 5 \times 5}{5 \times 5} \tag{8}\\
& =5 \times 5 \times 5=5^{3} \tag{9}
\end{align*}
$$

In thinking how you have gotten the exponent 3 , you will see that you subtracted 2 from 5 . Therefore, more generally, we can write:

$$
\begin{equation*}
\frac{a^{b}}{a^{c}}=a^{b-c} \tag{10}
\end{equation*}
$$

Problem 7. What is $2^{2019} \div 2^{2016}$?
Given this, what is a^{0} ? Certainly, multiplying something 0 times doesn't really make much sense. Nevertheless, we can assign to it a certain value that is mathematically consistent. First, notice:

$$
\begin{equation*}
a^{d} \times a^{0}=a^{d+0}=a^{d} \tag{11}
\end{equation*}
$$

In other words, if you multiply a^{d} by a^{0}, you get the same number a^{d}. So, we conclude:

$$
\begin{equation*}
a^{0}=1 \tag{12}
\end{equation*}
$$

Of course, there is another way of seeing this:

$$
\begin{equation*}
\frac{a^{d}}{a^{d}}=a^{d-d} \tag{13}
\end{equation*}
$$

As the left-hand side is 1 and the right-hand side a^{0}, we can conclude again that $a^{0}=1$.

Problem 8. What is 2.5^{0} ?

Finally, negative exponent. Let's divide both sides of (12) by a^{b}. We get

$$
\begin{align*}
\frac{a^{0}}{a^{b}} & =\frac{1}{a^{b}} \tag{14}\\
a^{0-b} & =\frac{1}{a^{b}} \tag{15}\\
a^{-b} & =\frac{1}{a^{b}} \tag{16}
\end{align*}
$$

This is a very useful result. For example,

$$
\begin{equation*}
3^{-3}=\frac{1}{3^{3}}=\frac{1}{27} \tag{17}
\end{equation*}
$$

As another example,

$$
\begin{equation*}
\left(\frac{1}{5}\right)^{-2}=\frac{1}{\left(\frac{1}{5}\right)^{2}}=\frac{1}{1 / 25}=25 \tag{18}
\end{equation*}
$$

Problem 9. Evaluate the following.

$$
\begin{equation*}
4^{-2}=?, \quad\left(\frac{1}{2}\right)^{-3}=?, \quad 10^{-2}=?, \quad 10^{-3}=? \tag{19}
\end{equation*}
$$

Problem 10. Answer without using a calculator.

- Compare the numbers 2^{100} and 3^{100}. Which is bigger?
- Compare the numbers 2^{100} and 2^{102}. Which is bigger?
- Compare the numbers 0.5^{100} and 0.5^{102}. Which is bigger?
- Compare the numbers 0.4^{100} and 0.6^{100} Which is bigger?
- Compare the numbers 3^{-100} and 3^{-101} Which is bigger?
- Compare the numbers 0.4^{-100} and 0.6^{-100}. Which is bigger?

To conclude this article, let me ask you a question. Can an exponent be a fraction? For example, what is $9^{1 / 2}$? At first glance, this seems to be a senseless question, as we cannot certainly multiply a number half times. However, as we just learned that a negative exponent makes sense, it also turns out that we can assign a value to a non-integer exponent. We will talk about it in "Root, cube root, and nth root, revisited."

Summary

- $a^{b} \times a^{c}=a^{b+c}$
- $\frac{a^{b}}{a^{c}}=a^{b-c}$.
- $a^{0}=1$, if $a \neq 0$.

