Graphs of quadratic polynomials

In this article, we will consider the graph of the form $y=a x^{2}+b x+c$. Let's start with the simplest case $b=c=0$, and $a>0$.

Problem 1. In Fig. 1 we have three graphs: A, B, C. They are $y=$ $x^{2}, y=2 x^{2}, y=\frac{x^{2}}{2}$. Which one is which? Notice that y can be never negative for all three graphs as something squared multiplied by a positive number is always positive or 0 . The minimum for $y, 0$ is achieved when x is 0.

Here, you see that C is sharper than B, and B is sharper than A. If you correctly solve this problem, you will find that, for positive f and g, if f is bigger than $g, y=f x^{2}$ is sharper than $y=g x^{2}$. Notice also that y increases as x goes to negative infinity or positive infinity.

Figure 1: $y=x^{2}, 2 x^{2}, \frac{x^{2}}{2}$

Figure 2: $y=-x^{2},-2 x^{2},-\frac{x^{2}}{2}$

Now let's consider $y=a x^{2}$ when $a<0$.
Problem 2. In Fig. 2 we have three graphs: D, E, F. They are $y=$ $-x^{2}, y=-2 x^{2}, y=-x^{2} / 2$. Which one is which? Notice that y can be never positive for all three graphs as something squared multiplied by a negative number is always negative or 0 . The maximum for $y, 0$ is achieved when x is 0 . Another way of seeing these graphs is regarding $\mathrm{D}, \mathrm{E}, \mathrm{F}$ as the reflection of A, B, C in Fig. 1.

Problem 3. Show that this reflection is a reflection over the x-axis from the equations of graphs.

Problem 4. In Fig. 2, we see that F is sharper than E , and E is sharper than D. Which one is sharper? $y=-5 x^{2}$ or $y=-x^{2}$?

Now, let's consider a general case. We consider $a>0$ first. Completing the square, we get

$$
\begin{equation*}
y=a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a} \tag{1}
\end{equation*}
$$

Notice that the minimum value the term $a\left(x+\frac{b}{2 a}\right)^{2}$ can have is 0 , which is achieved when $x+\frac{b}{2 a}=0$. Therefore, the minimum of (1) is $-\frac{b^{2}-4 a c}{4 a}$ and achieved when $x=-\frac{b}{2 a}$. This point is called the "vertex." In other words,

Figure 3: $y=a x^{2}+b x+c, a>0$

Figure 4: $y=a x^{2}+b x+c, a<0$
the vertex is at $\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)$. See Fig. 3.
Problem 5. What is the minimum of $y=a x^{2}$, for $a>0$? When is it achieved? What is the vertex of $y=a x^{2}$?

Problem 6. We can regard the graph $y=a x^{2}+b x+c$ as the graph $y=a x^{2}$ shifted by a certain distance in positive or negative x-direction and another certain distance in positive or negative y-direction. What are these distances and directions? (Hint ${ }^{1}$)

Now, let's consider the case $a<0$. Completing the square, we get

$$
\begin{equation*}
y=a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a} \tag{2}
\end{equation*}
$$

just as (1). Notice that the maximum value the term $a\left(x+\frac{b}{2 a}\right)^{2}$ can have is 0 , as a is negative, and this maximum is achieved when $x+\frac{b}{2 a}=0$. Therefore, the maximum of (1) is $-\frac{b^{2}-4 a c}{4 a}$, which is achieved when $x=$ $-\frac{b}{2 a}$. This point is called the "vertex." In other words, the vertex is at $\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)$. See Fig. 4 .

Summary

- For a graph $y=a x^{2}+b x+c$ for $a>0, y$ increases as x goes to negative infinity or positive infinity. The y-minimum point is called the "vertex."
- For a graph $y=a x^{2}+b x+c$ for $a<0, y$ decreases as x goes to negative infinity or positive infinity. The y-maximum point is called the "vertex."
- You can obtain the coordinate of vertex by completing the square.

[^0]
[^0]: ${ }^{1}$ See (1), or consider the position of vertex.

