Inscribed circle in a triangle

A triangle has three angles. See Fig. 1. We can bisect each angle, and the lines which bisect each angle meet at a point D. In other words, if we have $\angle A B D=\angle C B D$ (denoted with ○) and $\angle A C D=\angle B C D$ (denoted with \times), we have $\angle B A D=\angle C A D$ (not denoted in the figure). This is so from the following reason. As there is only one line that bisects $\angle C A B$, if $\overline{D A}$ does so, it implies that D is indeed the point that the three bisected lines meet.

So, why do they meet at a single point? Why does $\overline{D A}$ bisect $\angle C A B$? To prove this, we will first draw three altitudes from D to each side. See Fig. 1 again. These altitudes are drawn in dotted lines. $\overline{D E}$ is perpendicular to $\overline{B C}, \overline{D G}$ is perpendicular to $\overline{A B}$, and $\overline{D F}$ is perpendicular to $\overline{A C}$.

Problem 1. Explain why $\triangle D B G$ is congruent to $\triangle D B E$. Is it SSS, SAS, or ASA?
Thus, we see that $\overline{D G}=\overline{D E}$. Similarly, $\triangle D C E$ is congruent to $\triangle D C F$. Therefore, $\overline{D E}=\overline{D F}$. Combining these two equations, we see that $\overline{D G}=\overline{D F}$. Now, notice that both $\triangle A D G$ and $\triangle A D F$ are right triangles. From the Pythagorean theorem, we have

$$
\begin{equation*}
\overline{A G}=\sqrt{\overline{A D}^{2}-\overline{D G}^{2}}, \quad \overline{A F}=\sqrt{\overline{A D}^{2}-\overline{D F}^{2}} \tag{1}
\end{equation*}
$$

Since $\overline{D F}=\overline{D G}$, we conclude $\overline{A G}=\overline{A F}$. Thus, $\triangle A D G$ and $\triangle A D F$ are SSS congruent. Therefore, in conclusion, we see that $\angle D A G=\angle D A F$, thus proving our assertion.

Final comment. As $\overline{D E}=\overline{D F}=\overline{D G}$, we can draw a circle of which center is D and passes the point E, F, G. In other words, its radius r is given by $r=\overline{D E}=\overline{D F}=\overline{D G}$. See Fig. 2. Notice also that $\overline{D E}$ is perpendicular to $\overline{B C}$. Thus, this circle meets $\overline{B C}$ at a single point, namely E. Similarly, it meets $\overline{C A}$ at a single point, namely, F. Similarly, it meets $\overline{A B}$ at a signle point, namely, G. We say that the circle is inscribed in the triangle.

Figure 1: bisected angles meeting at a point

Figure 2: inscribed circle in a triangle

Summary

- Three lines that bisect each angle of triangle meet at a point.
- We can draw a circle, of which the center is such a point, and touches each side. We call such a circle "inscribed circle in triangle."

