Inscribed quadrilateral in a circle

See Fig. 1. D is the center of the circle, and A, B, and C are on the circle. If $\angle A D C$ is θ, what is $\angle A B C$ in terms of θ ?

See Fig. 2. Let's say

$$
\begin{equation*}
\angle A B D=a, \quad \angle C B D=b \tag{1}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\angle A B C=a+b \tag{2}
\end{equation*}
$$

As $\triangle A B D$ and $\triangle C B D$ are isosceles triangles, we have

$$
\begin{equation*}
\angle D A B=a, \quad \angle D C B=b \tag{3}
\end{equation*}
$$

As the sum of angles of a triangle is always 180°, we have

$$
\begin{equation*}
\angle A D B=180^{\circ}-2 a, \quad \angle B D C=180^{\circ}-2 b \tag{4}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\angle A D E=2 a, \quad \angle C D E=2 b \tag{5}
\end{equation*}
$$

which, in turn, implies

$$
\begin{equation*}
\angle A D C=2 a+2 b=2(a+b) \tag{6}
\end{equation*}
$$

As we defined $\angle A D C=\theta$, from (2) we see that

$$
\begin{equation*}
\angle A B C=\theta / 2 \tag{7}
\end{equation*}
$$

Notice that once the positions A and C on a circle are determined, the angle θ is determined.

Figure 1: $\angle A D C=\theta, \angle A B C=$?

Figure 2: $\angle A B C=a+b, \angle A D C=2 a+2 b$

Figure 3: $\angle A B^{\prime} C=\theta / 2$

Figure 4: $\angle A B C=\angle A B^{\prime} C=\angle A B^{\prime \prime} C$
$\angle A B C$, which is $\theta / 2$, is also determined, no matter where B is located, as long as it is on the circle. Thus, for example, as in Fig. 3. even if B were located at $B^{\prime}, \angle A B^{\prime} C$ is still $\theta / 2$. Think along this way. We could as well not draw $\angle A D C$ from the first place, as in Fig. 4. Then, we see that

$$
\begin{equation*}
\angle A B C=\angle A B^{\prime} C=\angle A B^{\prime \prime} C \tag{8}
\end{equation*}
$$

i.e., they are all same.

Notice also that we never assumed θ was smaller than 180°. Thus, (7) is valid when θ is bigger than 180°. See Fig. 5. Then, if we call the outer angle of $\angle A D C$ by θ^{\prime}, we must have $\angle A F C=\theta^{\prime} / 2$. Given this, note that $\theta^{\prime}=360^{\circ}-\theta$. Then, from (7), we obtain (Problem 1. Check this!)

$$
\begin{equation*}
\angle A F C=180^{\circ}-\theta / 2=180^{\circ}-\angle A B C \tag{9}
\end{equation*}
$$

Now, we could as well not draw $\angle A D C$ as in Fig. 6. Nevertheless, (9) still remains true. In other words,

$$
\begin{equation*}
\angle A F C+\angle A B C=180^{\circ} \tag{10}
\end{equation*}
$$

is always satisfied, if the four vertices of a quadrilateral lie on a cicle. We call such a

Figure 5: $\angle A D C=\theta^{\prime}$

Figure 6: $\angle A F C+\angle A B C=180^{\circ}$

Figure 7: $\angle A F C+\angle A G C>180^{\circ}$

Figure 8: $\angle A F C+\angle A G^{\prime} C<180^{\circ}$
quadrilateral, "inscribed quadrilateral in a circle." Here, we see that the two facing angles of such a quadrilateral always add up to 180°. Thus, it goes without saying that $\angle B A F+$ $\angle B C F=180^{\circ}$. Of course, we could have alternatively obtained this from (10), additionally using the fact that the four angles of a quadrilateral always add up to 360°.

From now on, we will show that the converse is true. In other words, if the two facing angles of a quadrilateral add up to 180°, it can be inscribed in a circlr. As we showed in the last article, given a triangle, you can always draw a unique circle in which the triangle is inscribed. In other words, given three points, we can lways draw a unique circle that passes all these three points. See Fig. 7. There is $\square A F C G$ and we have drawn a circle that passes A, F, C. Then, we can extend $\overline{C G}$ to $\overline{C H}$, so that H is on the circle. Then, we see that

$$
\begin{equation*}
\angle A F C+\angle A H C=180^{\circ} \tag{11}
\end{equation*}
$$

However, we see that $\angle A G C>\angle A H C$. Thus, we see that

$$
\begin{equation*}
\angle A F C+\angle A G C>180^{\circ} \tag{12}
\end{equation*}
$$

Thus, we see that $\square A F C G$ can't be inscribed in a circle, if (12) is satisfied. Similarly, from Fig. 8, we see that if

$$
\begin{equation*}
\angle A F C+\angle A G^{\prime} C<180^{\circ} \tag{13}
\end{equation*}
$$

Figure 9: Problem 2. $\angle A B C=$?
is satisfied $\square A F C G^{\prime}$ can't be inscribed in a circle. Therefore, if and only if

$$
\begin{equation*}
\angle A F C+\angle A G C=180^{\circ} \tag{14}
\end{equation*}
$$

is satisfied, $\square A F C G$ is inscribed in a circle.
Problem 2. See Fig. 9. $\overline{A C}$ is a diameter of the circle. Then, what is $\angle A B C$?

Summary

- If a quadrilateral is inscribed in a circle, its two angles facing each other always add up to 180°.
- If the sum of two angles facing each other in a quadrilateral is 180°, the quadrilateral can be inscribed in a circle.

