## Inscribed quadrilateral in a circle

See Fig. 1. *D* is the center of the circle, and *A*, *B*, and *C* are on the circle. If  $\angle ADC$  is  $\theta$ , what is  $\angle ABC$  in terms of  $\theta$ ?

See Fig. 2. Let's say

$$\angle ABD = a, \qquad \angle CBD = b \tag{1}$$

Then, we have

$$\angle ABC = a + b \tag{2}$$

As  $\triangle ABD$  and  $\triangle CBD$  are isosceles triangles, we have

$$\angle DAB = a, \qquad \angle DCB = b \tag{3}$$

As the sum of angles of a triangle is always  $180^{\circ}$ , we have

$$\angle ADB = 180^{\circ} - 2a, \qquad \angle BDC = 180^{\circ} - 2b \tag{4}$$

which implies

$$\angle ADE = 2a, \qquad \angle CDE = 2b \tag{5}$$

which, in turn, implies

$$\angle ADC = 2a + 2b = 2(a+b) \tag{6}$$

As we defined  $\angle ADC = \theta$ , from (2) we see that

$$\angle ABC = \theta/2 \tag{7}$$

Notice that once the positions A and C on a circle are determined, the angle  $\theta$  is determined.





Figure 1:  $\angle ADC = \theta$ ,  $\angle ABC = ?$ 

Figure 2:  $\angle ABC = a + b$ ,  $\angle ADC = 2a + 2b$ 



Figure 3:  $\angle AB'C = \theta/2$ 

Figure 4:  $\angle ABC = \angle AB'C = \angle AB''C$ 

 $\angle ABC$ , which is  $\theta/2$ , is also determined, no matter where *B* is located, as long as it is on the circle. Thus, for example, as in Fig. 3. even if *B* were located at *B'*,  $\angle AB'C$  is still  $\theta/2$ . Think along this way. We could as well not draw  $\angle ADC$  from the first place, as in Fig. 4. Then, we see that

$$\angle ABC = \angle AB'C = \angle AB''C \tag{8}$$

i.e., they are all same.

Notice also that we never assumed  $\theta$  was smaller than 180°. Thus, (7) is valid when  $\theta$  is bigger than 180°. See Fig. 5. Then, if we call the outer angle of  $\angle ADC$  by  $\theta'$ , we must have  $\angle AFC = \theta'/2$ . Given this, note that  $\theta' = 360^\circ - \theta$ . Then, from (7), we obtain (**Problem 1.** Check this!)

$$\angle AFC = 180^{\circ} - \theta/2 = 180^{\circ} - \angle ABC \tag{9}$$

Now, we could as well not draw  $\angle ADC$  as in Fig. 6. Nevertheless, (9) still remains true. In other words,

$$\angle AFC + \angle ABC = 180^{\circ} \tag{10}$$

is always satisfied, if the four vertices of a quadrilateral lie on a cicle. We call such a



Figure 5:  $\angle ADC = \theta'$ 



Figure 6:  $\angle AFC + \angle ABC = 180^{\circ}$ 





Figure 7:  $\angle AFC + \angle AGC > 180^{\circ}$ 

Figure 8:  $\angle AFC + \angle AG'C < 180^{\circ}$ 

quadrilateral, "inscribed quadrilateral in a circle." Here, we see that the two facing angles of such a quadrilateral always add up to  $180^{\circ}$ . Thus, it goes without saying that  $\angle BAF + \angle BCF = 180^{\circ}$ . Of course, we could have alternatively obtained this from (10), additionally using the fact that the four angles of a quadrilateral always add up to  $360^{\circ}$ .

From now on, we will show that the converse is true. In other words, if the two facing angles of a quadrilateral add up to  $180^{\circ}$ , it can be inscribed in a circlr. As we showed in the last article, given a triangle, you can always draw a unique circle in which the triangle is inscribed. In other words, given three points, we can lways draw a unique circle that passes all these three points. See Fig. 7. There is  $\Box AFCG$  and we have drawn a circle that passes A, F, C. Then, we can extend  $\overline{CG}$  to  $\overline{CH}$ , so that H is on the circle. Then, we see that

$$\angle AFC + \angle AHC = 180^{\circ} \tag{11}$$

However, we see that  $\angle AGC > \angle AHC$ . Thus, we see that

2

$$\angle AFC + \angle AGC > 180^{\circ} \tag{12}$$

Thus, we see that  $\Box AFCG$  can't be inscribed in a circle, if (12) is satisfied. Similarly, from Fig. 8, we see that if

$$\angle AFC + \angle AG'C < 180^{\circ} \tag{13}$$



Figure 9: Problem 2.  $\angle ABC = ?$ 

is satisfied  $\Box AFCG'$  can't be inscribed in a circle. Therefore, if and only if

$$\angle AFC + \angle AGC = 180^{\circ} \tag{14}$$

is satisfied,  $\Box AFCG$  is inscribed in a circle.

**Problem 2.** See Fig. 9.  $\overline{AC}$  is a diameter of the circle. Then, what is  $\angle ABC$ ?

## Summary

- If a quadrilateral is inscribed in a circle, its two angles facing each other always add up to 180°.
- If the sum of two angles facing each other in a quadrilateral is 180°, the quadrilateral can be inscribed in a circle.