## Polynomials, expansion and factoring

A polynomial is an expression that can be written as $a x_{1}^{n 1} x_{2}^{n_{2}} x_{3}^{n_{3}} \cdots x_{m}^{n_{m}}$ or its sum, where $a$ is a number, often called "coefficient," $x$ s are variables, and $n$ s are non-negative integers. For example, the following expressions are all polynomials:

$$
x y^{3}, \quad \frac{1}{2}, \quad 2 y^{2} z-3 x y z-x+4, \quad 3 x^{2} y z+4 y^{2} z, \quad 5 x+3
$$

$x y^{3}$ is a polynomial, because we can set $a=1, x_{1}=x, n_{1}=1, x_{2}=y, n_{2}=3$. $\frac{1}{2}$ is a polynomial, because we can set $a=1 / 2, n_{1}=0.2 y^{2} z-3 x y z-x$ is a polynomial as each term in the expression, i.e., $2 y^{2} z,-3 x y z,-x, 4$ is a polynomial. In this expression, we see that the coefficient for $y^{2} z$ is 2 , the coefficient for $x y z$ is -3 , the coefficient for $x$ is -1 . The last term in this expression, 4, which does not involve any variable is called the "constant term." As another example, the constant term in $5 x+3$ is 3 .

On the other hand, the following expressions are not polynomials:

$$
\frac{3 x}{y}, \quad x y-2 x^{2}+\sqrt{x}, \quad \frac{3 x z}{2 x^{2}+5}, \quad x^{2}+3 \sqrt{x}
$$

The first expression, which is equal to $3 x y^{-1}$ is not a polynomial, because $y$ has a negative exponent. The second expression is not a polynomial, because the last term, which is equal to $x^{1 / 2}$ has a non-integer exponent. The third expression is not a polynomial, because it cannot be expressed as the sum of desired form that we mentioned.

Problem 1. Which one of these are polynomials and which are not?

$$
\frac{3 x^{2}+4 x+5 y}{10}, \quad 10 x+4 y, \quad \sqrt{x y}, \quad 4+5 x+\sqrt{x}
$$

The degree of a term is the sum of the exponents in a term. For example, the degree of $x y^{3}$ is 4 as $x y^{3}=x^{1} y^{3}$ and $1+3=4$. Similarly, the degree of $-3 x^{4} y z$ is $4+1+1=6$.

The degree of a polynomial is the largest of the degrees of each term. For example, $2 x y^{2} z-4 w x y z^{3}$ has a degree 6 as $2 x y^{2} z$ has a degree 4 and $-4 w x y z^{3}$ has a degree 6 . Expressions which have degree 1 are called "linear." For example $x+y=4$ and $x-y=-3$ are considered as linear equations.

Problem 2. Find the degree of the following polynomials

$$
5 x y z w+4 x, \quad x-y-z w, \quad z^{5}+4 x^{2}-3 x, \quad \frac{3}{2}, \quad x+2-3 x^{2}
$$

Polynomials can be added, subtracted, and multiplied. The result of this are still polynomials. First, examples for addition and subtraction.

$$
\begin{equation*}
\left(x y+4 x y^{2}\right)+\left(-x y+3 x y^{2}\right)=7 x y^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(6 y+7 x y z)-(5 y-3 x y z+2)=6 y+7 x y z-5 y+3 x y z-2=y+10 x y z-2 \tag{2}
\end{equation*}
$$

In these examples, notice that similar terms are added (or subtracted) together. In (1), we have

$$
\begin{gather*}
x y+(-x y)=(1+(-1)) x y=0 x y=0  \tag{3}\\
4 x y^{2}+3 x y^{2}=(4+3) x y^{2}=7 x y^{2} \tag{4}
\end{gather*}
$$

Similarly, in (2),

$$
\begin{gather*}
6 y-5 y=(6-5) y=1 y=y  \tag{5}\\
7 x y z+3 x y z=(7+3) x y z=10 x y z \tag{6}
\end{gather*}
$$

As mentioned in our earlier article "Symbols and Expressions," remember also that the negative sign in front of $(5 y-3 x y z+2)$ applies to each term in the parenthesis. Therefore,

$$
\begin{equation*}
-(5 y-3 x y z+2)=-5 y-(-3 x y z)-(+2)=-5 y+3 x y z-2 \tag{7}
\end{equation*}
$$

It is not equal to $-5 y-3 y z+2$.
Now, an example for multiplication.

$$
\begin{equation*}
(x+y)(z+w)=(x+y) z+(x+y) w=x z+y z+x w+y w \tag{8}
\end{equation*}
$$

where in the last equation we used the distributive property.
However, when a polynomial is divided by another polynomial, the result can be a nonpolynomial. For example, the following is not polynomial,

$$
\begin{equation*}
(x y+y z) \div y^{2}=x y / y^{2}+y z / y^{2}=\frac{x}{y}+\frac{z}{y} \tag{9}
\end{equation*}
$$

as the above expression has negative exponents (i.e. $x y^{-1}+z y^{-1}$ )
Now comes an important concept. An expansion of a product of sums expresses it as a sum of products by using the distributive property. In other words, you remove the parenthesis. (8) is a good example. Here comes some important expansions.

$$
\begin{align*}
(a+b)^{2} & =(a+b)(a+b) \\
& =(a+b) a+(a+b) b \\
& =a^{2}+b a+a b+b^{2} \\
& =a^{2}+2 a b+b^{2}  \tag{10}\\
(a-b)^{2} & =(a-b)(a-b) \\
& =(a-b) a-b(a-b) \\
& =a^{2}-b a-a b+b^{2} \\
& =a^{2}-2 a b+b^{2} \tag{11}
\end{align*}
$$

$$
\begin{align*}
(a+b)(a-b) & =(a+b) a-b(a+b) \\
& =a^{2}+a b-b a-b^{2} \\
& =a^{2}-b^{2} \tag{12}
\end{align*}
$$

I recommend you memorize these three formulas. These formulas come handy, when you expand expressions of this form. For example, you can expand

$$
\begin{equation*}
(x+3)^{2}=x^{2}+2(3 x)+3^{2}=x^{2}+6 x+9 \tag{13}
\end{equation*}
$$

As another example,

$$
\begin{equation*}
(x+2 y)^{2}=x^{2}+2(x \cdot 2 y)+(2 y)^{2}=x^{2}+4 x y+4 y^{2} \tag{14}
\end{equation*}
$$

Actually, you can regard (11) as an example of (10) if you think along the following way:

$$
\begin{equation*}
(a+(-b))^{2}=a^{2}+2(a)(-b)+(-b)^{2}=a^{2}-2 a b+b^{2} \tag{15}
\end{equation*}
$$

Using the distributive property iteratively, one can expand more complicated expressions. For example,

$$
\begin{align*}
(a+b)^{3} & =(a+b)(a+b)^{2} \\
& =(a+b)\left(a^{2}+2 a b+b^{2}\right) \\
& =a\left(a^{2}+2 a b+b^{2}\right)+b\left(a^{2}+2 a b+b^{2}\right) \\
& =a^{3}+2 a^{2} b+a b^{2}+a^{2} b+2 a b^{2}+b^{3} \\
& =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \tag{16}
\end{align*}
$$

Problem 3. Expand the following.

$$
\begin{array}{ccc}
(x+2)^{2}=?, & (x-2)^{2}=?, & (x-1)^{2}=?, \\
(x+2 y)^{2}=?, & (2 x+1)^{2}=?, & (2 x-1)^{2}=?, \\
(2 a+b)^{2}=?, & (y-x)^{2}=?, & (x+1)^{3}=?, \\
(x-4)(x+4)=?, & (2 x-y)(2 x+y)=?, & (x+10)(x-10)=?
\end{array}
$$

Problem 4. Check the following expansion, which I recommend you memorize.

$$
\begin{equation*}
(x+a)(x+b)=x^{2}+(a+b) x+a b, \quad(x-a)(x-b)=x^{2}-(a+b) x+a b \tag{17}
\end{equation*}
$$

We can use the above formulas to expand certain expansions conveniently. For example,

$$
\begin{equation*}
(x-4)(x+3)=(x+(-4))(x+3)=x^{2}+(-4+3) x+(-4) 3=x^{2}-x-12 \tag{18}
\end{equation*}
$$

Notice that the second expression in (17) is a special case of the first expansion. Let's see this:

$$
\begin{equation*}
(x+(-a))(x+(-b))=x^{2}+((-a)+(-b)) x+(-a)(-b)=x^{2}-(a+b) x+a b \tag{19}
\end{equation*}
$$

Problem 5. Expand the following.

$$
\begin{array}{ccc}
(x+3)(x+2)=?, & (x+1)(x+4)=?, & (x+1)(x+2)=? \\
(x-1)(x-3)-?, & (x-4)(x-5)=?, & (x-4)(x-1)=? \\
(x+2)(x-3)=?, & (x-3)(x+4)=?, & (x-1)(x+2)=? \\
(a-b)^{3}=?, & (a+b)\left(a^{2}-a b+b^{2}\right)=?, & (a-b)\left(a^{2}+a b+b^{2}\right)=? \\
\left(x^{2}+1\right)(x+1)=?, & \left(x^{2}-1\right)(2 x+1)=?, & \left(x^{2}-2 x\right)\left(x^{2}+2 x\right)=? \\
(3 x+4)(2 x+1)=?, & (3 x+1)(x-2)=?, & (x+1)(4 x-1)=?
\end{array}
$$

There is a trick to expand the expression of the form in the last line, i.e., $(a x+b)(c y+d)$. Let me explain with one of the examples above. Let's say you expand

$$
\begin{equation*}
(3 x+4)(2 x+1)= \tag{20}
\end{equation*}
$$

First, you multiply terms proportional to $x$. By multiplying $3 x$ and $2 x$, you get $6 x^{2}$. Then, to obtain the term proportional to $x$, you consider the following multiplications and add them.

$$
\begin{equation*}
\stackrel{\square}{(3 x+4)(2 x+1)} \tag{21}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
3 x \times 1+4 \times 2 x=11 x \tag{22}
\end{equation*}
$$

So, $11 x$. Finally, if you multiply 4 and 1 , you get 4 . Therefore the answer is $6 x^{2}+11 x+4$. It is not a great trick, but convenient. If you cannot remember this trick, you can simply expand by the usual way.

Problem 6. Expand the following.

$$
\begin{array}{lll}
(2 x+1)(x+1)=?, & (2 x-1)(x-1)=?, & (3 x+1)(x-1)=? \\
(5 x-1)(4 x-1)=?, & (x-4)(x+5)=?, & (3 x+1)(x+1)=?
\end{array}
$$

On the other hand, factoring is the reverse process of expansion. For example,

$$
\begin{equation*}
2 x+4 y=2(x+2 y), \quad x^{2}-4 y^{2}=(x+2 y)(x-2 y), \quad x^{2}+8 x+16=(x+4)^{2} \tag{23}
\end{equation*}
$$

A good strategy to factor is finding the common factor among the terms. For example, to factor $2 m a+m b+m c$, notice that each term has the common factor $m$. Thus,

$$
\begin{equation*}
2 m a+m b+m c=m(2 a+b+c) \tag{24}
\end{equation*}
$$

In some cases, this strategy alone does not work, as you can see in the second and the third examples of (23). Nevertheless, if each term has a common factor, you must factor out by this common factor first. For example,

$$
\begin{equation*}
m x^{2}+2 m x+m=m\left(x^{2}+2 x+1\right) \tag{25}
\end{equation*}
$$

then, we can take the second step as follow

$$
\begin{equation*}
m\left(x^{2}+2 x+1\right)=m(x+1)^{2} \tag{26}
\end{equation*}
$$

Problem 7. Factor out the following.

$$
\begin{array}{rrrr}
2 x y+4 x y z=?, & x^{2}-4=?, & x^{2}+2 x+1=?, & 3 x-9 x y=? \\
x^{2}+4 x+4=?, & x^{2}-9=?, & x^{2}-2 x+1=?, & 4 x^{2}-y^{2}=? \\
2 x y+4 x y z w=?, & 4 x^{2}-9=?, & x^{2}-4 x+4=?, & 9 x y-3 x=?
\end{array}
$$

Now some applications of expansion.

$$
\begin{equation*}
(2+\sqrt{3})^{2}=2^{2}+2(2 \sqrt{3})+(\sqrt{3})^{2}=4+4 \sqrt{3}+3=7+4 \sqrt{3} \tag{27}
\end{equation*}
$$

Problem 8. Expand the following expressions.

$$
(2-\sqrt{2})^{2}=?, \quad(\sqrt{2}+1)^{2}=?, \quad(\sqrt{2}+\sqrt{3})^{2}=?
$$

Suppose you want to know $a^{2}+b^{2}$, given that $a+b=5$ and $a b=2$. To obtain the answer, you may want to get $a$ and $b$ first. However, to do so, you would need to know how to solve quadratic equations, which we haven't taught you yet. Nevertheless, there is a way to find the answer without explicitly knowing $a$ and $b$. Observe $(a+b)^{2}=a^{2}+2 a b+b^{2}$ implies

$$
\begin{equation*}
a^{2}+b^{2}=(a+b)^{2}-2 a b \tag{28}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
a^{2}+b^{2}=5^{2}-2 \times 2=21 \tag{29}
\end{equation*}
$$

Problem 9. Let's say $a-b=5$ and $a b=2$. What is $a^{2}+b^{2}$ ?
Problem 10. Let's say $a^{2}+b^{2}=20$ and $a b=3$, what is $a+b$ ? What is $a-b$ if $a>b$ ?
Problem 11. Let's say

$$
\begin{equation*}
a+b=10, \quad a b=5, \quad a>b \tag{30}
\end{equation*}
$$

What is $a^{2}+b^{2}$ ? What is $a-b$ ? Find $a$ and $b$. (Hint ${ }^{1}$ )
Problem 12. Prove the following. This is useful in string theory. (We assume $x \neq 0,1$. Hint ${ }^{2}$ )

$$
\begin{equation*}
x^{u}(1-x)^{v-1}+x^{u-1}(1-x)^{v}=x^{u-1}(1-x)^{v-1} \tag{31}
\end{equation*}
$$

Problem 13. What degree of a polynomial do you get if you add a polynomial of degree 3 to a polynomial of degree 2 ?

Problem 14. What are the possible degrees of the polynomial you get if you add a polynomial of degree 4 to a polynomial of degree 4? (Challenging!)

Probelm 15. What degree of a polynomial do you get if you multiply a polynomial of degree 2 by a polynomial of degree 1? (Challenging!)

[^0]
## Summary

- A polynomial is an expression that can be written as $a x_{1}^{n 1} x_{2}^{n_{2}} x_{3}^{n_{3}} \cdots x_{m}^{n_{m}}$ or its sum, where $a$ is a number, $x$ s are variables, and $n$ s are non-negative integers.
- The degree of a term is the sum of the exponents in a term.
- The degree of a polynomial is the largest of the degrees of each term.
- When polynomials are added, subtracted, or multiplied, the result of this are still polynomials.
- However, when a polynomial is divided by another polynomial, the result can be a non-polynomial.
- An expansion of a product of sums expresses it as a sum of products by using the distributive property. In other words, you remove the parenthesis.
- $(a+b)^{2}=a^{2}+2 a b+b^{2}, \quad(a-b)^{2}=a^{2}-2 a b+b^{2}, \quad(a+b)(a-b)=a^{2}-b^{2}$
- $(x+a)(x+b)=x^{2}+(a+b) x+a b, \quad(x-a)(x-b)=x^{2}-(a+b) x+a b$
- Factoring is the reverse process of expansion.


[^0]:    ${ }^{1}$ If you know $a+b$ and $a-b$, you can find $a$ and $b$ by solving systems of linear equations.
    ${ }^{2}$ Use $x^{u}=x^{u-1} x$ and $(1-x)^{v}=(1-x)^{v-1}(1-x)$.

