Root, cube root and $n^{\text {th }}$ root, revisited

In an earlier article, we introduced the concept of root, cube root and nth root. In this article, we will delve into their properties.

First,

$$
\begin{equation*}
\sqrt{x} \sqrt{y}=\sqrt{x y} \tag{1}
\end{equation*}
$$

One can show this as follows:

$$
\begin{equation*}
(\sqrt{x} \sqrt{y})^{2}=(\sqrt{x})^{2}(\sqrt{y})^{2}=x y \tag{2}
\end{equation*}
$$

Similarly, one can show

$$
\begin{equation*}
\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}} \tag{3}
\end{equation*}
$$

Using these relations, we can play around with roots. For example,

$$
\begin{equation*}
\sqrt{8}=\sqrt{4} \sqrt{2}=2 \sqrt{2}, \quad \sqrt{18}=\sqrt{9} \sqrt{2}=3 \sqrt{2} \tag{4}
\end{equation*}
$$

Problem 1. Show the following. (Hint ${ }^{1}$)

$$
\begin{equation*}
\sqrt{x} \sqrt{y} \sqrt{z}=\sqrt{x y z} \tag{5}
\end{equation*}
$$

Problem 2. Show the following.

$$
\begin{equation*}
\sqrt[3]{x} \sqrt[3]{y}=\sqrt[3]{x y} \tag{6}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\sqrt[n]{x} \sqrt[n]{y}=\sqrt[n]{x y} \tag{7}
\end{equation*}
$$

Finally, let us mention how the concepts of root, cube root and $n^{\text {th }}$ root connects to exponents. First, notice that expressions such as $x^{1 / 2}$ wouldn't make much sense at first glance, since you cannot multiply a number "half" times. However, there is a way to assign a value to this expression in a consistent way. (Remember, we assign values to cases in which a number is multiplied " 0 " times and "negative" times. There is nothing we can't do.) So, let's see. Observe:

$$
\begin{equation*}
\left(x^{\frac{1}{2}}\right)^{2}=x^{\frac{1}{2} \cdot 2}=x^{1}=x \tag{8}
\end{equation*}
$$

[^0]In other words, the square of $x^{1 / 2}$ is x. Therefore, we conclude

$$
\begin{equation*}
x^{\frac{1}{2}}=\sqrt{x} \tag{9}
\end{equation*}
$$

Problem 3. Show that the cube root of x is $x^{\frac{1}{3}}$. (Hint ${ }^{2}$)
You just showed

$$
\begin{equation*}
x^{\frac{1}{3}}=\sqrt[3]{x} \tag{10}
\end{equation*}
$$

Similarly, you can also show that

$$
\begin{equation*}
\quad x^{\frac{1}{n}}=\sqrt[n]{x} \tag{11}
\end{equation*}
$$

Given this, what would expressions like $x^{2 / 3}$ mean? We have:

$$
\begin{equation*}
x^{\frac{2}{3}}=\left(x^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{x})^{2}=\sqrt[3]{x^{2}} \tag{12}
\end{equation*}
$$

where in the last step we used the result of Problem 2 (with y replaced by $x)$. There is another way to derive this result:

$$
\begin{equation*}
x^{\frac{2}{3}}=\left(x^{2}\right)^{\frac{1}{3}}=\sqrt[3]{x^{2}} \tag{13}
\end{equation*}
$$

More generally,

$$
\begin{equation*}
x^{\frac{p}{q}}=(\sqrt[q]{x})^{p}=\sqrt[q]{x^{p}} \tag{14}
\end{equation*}
$$

Problem 4. Simplify or evaluate the following. (Hint ${ }^{3}$)

$$
8^{\frac{4}{3}}=?, \quad \sqrt{12} \sqrt{3}=?, \quad \sqrt{18}-\sqrt{8}=?, \quad 4^{-\frac{3}{2}}=?, \quad\left(\frac{1}{4}\right)^{-\frac{1}{2}}=?
$$

Problem 5. Simplify the following. Assume that b is positive. (Hint ${ }^{4}$)

$$
\begin{equation*}
\left(\frac{\sqrt{a b}}{b}\right)^{2}=?, \quad \frac{a}{b} \sqrt{\frac{b}{c}}=?, \quad \frac{a^{3 / 2}}{a b}=?, \quad \sqrt{\frac{a^{4}}{b^{4}}}=? \tag{15}
\end{equation*}
$$

Problem 6. Solve the following equations.

$$
\begin{gather*}
\sqrt{x}=3 \tag{16}\\
\sqrt{x+1}=0 \tag{17}\\
\sqrt[3]{x}=3 \tag{18}\\
\sqrt{2 x-3}=2 \tag{19}\\
\sqrt{\sqrt{x}}=2 \tag{20}
\end{gather*}
$$

[^1]Problem 7. Solve the following equations. (Hint ${ }^{5}$)

$$
\begin{align*}
\sqrt{x}+4 & =2 \sqrt{x}+1 \tag{21}\\
\sqrt{x+2}+1 & =3 \sqrt{x+2}-1 \tag{22}
\end{align*}
$$

Problem 8. Explain why the following equations have no solutions.

$$
\begin{gather*}
\sqrt{x}=-4 \tag{23}\\
\sqrt{x}+4=-\sqrt{x} \tag{24}\\
x^{2}+5=3 \tag{25}
\end{gather*}
$$

Problem 9. Solve the following equations. $\left(\mathrm{Hint}^{6}\right)$

$$
\begin{gather*}
x^{2}+4=9 \tag{26}\\
x^{2}+3=3 x^{2} \tag{27}\\
\sqrt{1-x^{2}}=x \tag{28}
\end{gather*}
$$

Summary

- $\sqrt{x} \sqrt{y}=\sqrt{x y}$
- $\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$
- $\sqrt[3]{x} \sqrt[3]{y}=\sqrt[3]{x y}$
- $x^{\frac{1}{2}}=\sqrt{x}$
- $x^{\frac{1}{n}}=\sqrt[n]{x}$
- $x^{\frac{p}{q}}=(\sqrt[q]{x})^{p}=\sqrt[q]{x^{p}}$

[^2]
[^0]: ${ }^{1}$ Show $(\sqrt{x} \sqrt{y} \sqrt{z})^{2}=x y z$.

[^1]: ${ }^{2}$ Show $\left(x^{\frac{1}{3}}\right)^{3}=x$.
 $\sqrt[3]{18}=\sqrt{9} \sqrt{2}, \sqrt{8}=\sqrt{4} \sqrt{2}$.
 ${ }^{4} \frac{a}{b}=\frac{a}{\sqrt{b} \sqrt{b}}$

[^2]: ${ }^{5}$ For the first one, obtain the value for \sqrt{x} first. For the second one, obtain the value for $\sqrt{x+2}$ first.
 ${ }^{6}$ The last equation implies $1-x^{2}=x^{2}$.

