Root, cube root and $n^{\text {th }}$ root

Let's say you squared a non-negative number and got 9 . What is the original number? The answer is 3 , as

$$
\begin{equation*}
3^{2}=3 \times 3=9 \tag{1}
\end{equation*}
$$

Let's say you squared a non-negative number and got 4. What is the original number? The answer is 2, as

$$
\begin{equation*}
2^{2}=2 \times 2=4 \tag{2}
\end{equation*}
$$

Let's say you squared a non-negative number and got 49. What is the original number? The answer is 7 , as

$$
\begin{equation*}
7^{2}=7 \times 7=49 \tag{3}
\end{equation*}
$$

Let's say you squared a non-negative number and got 25 . What is the original number? The answer is 5, as

$$
\begin{equation*}
5^{2}=5 \times 5=25 \tag{4}
\end{equation*}
$$

Let's say you squared a non-negative number and got 11 . What is the original number? We call this number $\sqrt{11}$. We pronounce $\sqrt{11}$ as "root 11 " or "square root of 11 ." How big is this number? As 3 squared is 9 and 4 squared is 16 , this number must be somewhere between 3 and 4 . In other words,

$$
\begin{equation*}
3<\sqrt{11}<4 \tag{5}
\end{equation*}
$$

Now notice further

$$
\begin{equation*}
3.3^{2}=10.89<11<3.5^{2}=12.25 \tag{6}
\end{equation*}
$$

So, we see that $\sqrt{11}$ is between 3.3 and 3.5 . By continuing this process, we can make the range as small as possible to find more accurate value for $\sqrt{11}$. However, actually, there is no need to perform such a tedious work. You can just use a calculator to find $\sqrt{11}$. For example, if you google "square root 11," you will get

$$
\begin{equation*}
\sqrt{11} \approx 3.31662479036 \tag{7}
\end{equation*}
$$

Certainly, by using a better software, you can obtain more exact value, i.e., more digits for $\sqrt{11}$. Of course, sometimes we can get the exact value for a square root without using a calculator. In our case of (1), (2), (3), and (4), we have

$$
\begin{equation*}
\sqrt{9}=3, \quad \sqrt{4}=2, \quad \sqrt{49}=7, \quad \sqrt{25}=5 \tag{8}
\end{equation*}
$$

More formally, if x is a non-negative number that satisfies $x^{2}=y$, we have:

$$
\begin{equation*}
x=\sqrt{y} \tag{9}
\end{equation*}
$$

So, why do we need the condition that x is a non-negative number? Let's see what happens when we remove this condition. If x is a number that satisfies $x^{2}=25$, what is x ? There are two possibilities: x can be either 5 or -5 as

$$
\begin{gather*}
5 \times 5=25 \tag{10}\\
(-5) \times(-5)=25 \tag{11}
\end{gather*}
$$

Therefore, we see that we can get two answers, if we remove the condition that the answer must be non-negative. i.e., if we allow a negative answer. This is problematic, because we would not know whether $\sqrt{25}$ means 5 or -5 .

Problem 1. Evaluate the following:

$$
\sqrt{0}, \quad \sqrt{1}, \quad \sqrt{100}, \quad \sqrt{81}, \quad \sqrt{\frac{1}{4}}
$$

These examples were carefully chosen so that you don't need to use a calculator to find the answer.

Problem 2. Using a calculator, evaluate the following up to three decimal digits:

$$
\sqrt{3}, \quad \sqrt{5}
$$

Now, let me introduce the cube root. If $x^{3}=y$, then $x=\sqrt[3]{y}$. For example, as $2^{3}=8$, we have $2=\sqrt[3]{8}$. Notice that this is not equal to $3 \sqrt{8}$, which means 3 multiplied by $\sqrt{8}$. The 3 in a cube root is written in a small size.

There is also another big difference between the root and the cube root. Notice that the root of a negative number doesn't exist; if you multiply a number by itself you get always a non-negative number. (Remember if you multiply -3 by -3 you get 9 not -9 .) On the other hand, the cube root of a negative number exists. For example, $\sqrt[3]{-27}=-3$ as $(-3)^{3}=$ $(-3) \times(-3) \times(-3)=-27$.

We can actually generalize the square root and the cube root to $n^{\text {th }}$ root. For example, if $x^{n}=y$ is satisfied, we have $x=\sqrt[n]{y}$.

Problem 3. Evaluate the following.

$$
\sqrt[3]{27}=? \quad \sqrt[5]{-1}=? \quad 3 \sqrt{16}=? \quad \sqrt{3 \sqrt{4}+3}=?
$$

Now, notice

$$
\begin{equation*}
(3 \sqrt{2})^{2}=3 \sqrt{2} \times 3 \sqrt{2}=3 \times 3 \times(\sqrt{2})^{2}=18 \tag{12}
\end{equation*}
$$

Problem 4. Evaluate the following.

$$
(2 \sqrt{3})^{2}, \quad(4 \sqrt{2})^{2}, \quad(\sqrt{2})^{4}, \quad(\sqrt{3.4561})^{2}
$$

Problem 5. From (12), explain why $\sqrt{18}$ is $3 \sqrt{2}$.
Problem 6. Evaluate the following.

$$
\sqrt{4^{2}}=?, \quad \sqrt{(-4)^{2}}=?, \quad \sqrt{6^{2}}=? \quad \sqrt{(-6)^{2}}
$$

If you solved the last problem correctly, you would agree that

$$
\begin{equation*}
\sqrt{(-5)^{2}}=\sqrt{5^{2}}=5 \tag{13}
\end{equation*}
$$

In other words, for a non-negative number a, we have

$$
\begin{equation*}
\sqrt{a^{2}}=a=|a| \tag{14}
\end{equation*}
$$

as a and $|a|$ are the same if a is non-negative. If a is negative, we have

$$
\begin{equation*}
\sqrt{a^{2}}=|a| \tag{15}
\end{equation*}
$$

For example,

$$
\begin{equation*}
\sqrt{(-5)^{2}}=5 \tag{16}
\end{equation*}
$$

which is equal to $|-5|$.
As a is always either non-negative or negative, from (14) and (15), we conclude

$$
\begin{equation*}
\sqrt{a^{2}}=|a| \tag{17}
\end{equation*}
$$

for any number a.
Problem 7. Explain why we always have

$$
\begin{equation*}
\sqrt{b^{2}}=-b \tag{18}
\end{equation*}
$$

if b is a negative number. If you are not sure how to explain this, it is sufficient to give an example.

Summary

- $x=\sqrt{y}$ is a non-negative number that satisfies $x^{2}=y$.
- $x=\sqrt[n]{y}$ satisfies $x^{n}=y$.
- $\sqrt{x^{2}}=|x|$.

