
System of linear equations, part II: three or more

unknowns

In the last article, we solved equations with two unknowns. In this
article, we explain how to solve equations with three or more unknowns.

Remember how we solved equations with two unknowns in the last ar-
ticle. We had two equations with two unknowns, and manipulated them
to turn them into one equation with one unknown by eliminating one of
the variables. Equations with three unknowns are similar. We have three
equations, and by eliminating one of the three variables, we can turn them
into two equations with two unknowns. Since we know how to solve two
equations with two unknowns, the job is done. Now you can easily guess
how to solve equations with four unknowns. We have four equations with
four unknowns, and by eliminating one of the four variables, we can turn
them into three equations with three unknowns, and so on.

Of course, without examples, this sounds somewhat abstract. So, let me
give you an example.

x + 2y + z = 4 (1)

x− 2y − 3z = 0 (2)

2x− y − z = 1 (3)

Subtracting (2) from (1), we get:

4y + 4z = 4 (4)

Multiplying (1) by 2, we get:

2x + 4y + 2z = 8 (5)

Subtracting (3) from the above equation, we get:

5y + 3z = 7 (6)

Now, we know how to solve (4) and (6). Multiplying (4) by 5/4, we get:

5y + 5z = 5 (7)
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Subtracting (6) from the above equation, we get 2z = −2. Therefore, we
conclude z = −1. Then, by plugging this back to (4) or (6), we get y = 2.
Then, by plugging these back into (1) or (2) or (3), we get x = 1.

We solved this problem by eliminating x first, but we could have solved
it by eliminating y or z first. Of course, we are guaranteed to get the same
answer.

Let me conclude this article with some comments. If there is one un-
known, we need one equation. If we had zero equations, we could not de-
termine the unknown. If we had two equations, we have more equations
than needed. In other words, one equation is redundant. If there are two
unknowns, we need two equations. If we had one equation, we cannot com-
pletely determine the unknowns: we only have one equation that relates
these two unknowns, so there are infinitely many solutions; any set of two
numbers that satisfy the one equation are solutions. If we had three equa-
tions, we have more equations than needed; we have one extra equation. If
solutions exist, this extra equation is redundant, since we can already deter-
mine the solutions without the extra equation. Otherwise, there will be no
solution at all, if the solution obtained from the first two equations doesn’t
satisfy the third equation. For example, if we solve the following equations

x + y = 3

x− y = 1

2x + y = 5 (8)

we already find x = 2, y = 1 from the first two equations, and the third
equation is trivially satisfied as 2 · 2 + 1 = 5. On the other hand, if we solve
the following equations

2x + y = 3

x + y = 2

2x− y = 0 (9)

we find x = 1, y = 1 from the first two equations, but if we plug in these
values to the third equation, it is not satisfied, so there are no solutions at
all.

Generalizing, if we have n unknowns, we need exactly n “linearly inde-
pendent” equations. (I will explain what “independent” means soon.) If we
had less than n equations we can never completely determine the unknowns,
although we would know some relations among them. In this case, we say
the unknowns are under-determined. If we had more than n equations, some
equations are necessarily redundant (on the conditions that the solutions ex-
ist at all), and the unknowns are over-determined. Otherwise, the solutions
do not exist.

However, it turns out that you cannot completely determine the un-
knowns even when you have n equations for n unknowns, if the equations
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are not “linearly independent” but “linearly dependent.” These are very
special cases. For example, let’s say

x + 2y − 3z = 4

2x− y + z = −3

3x + y − 2z = 1 (10)

If you sum the first equation and the second equation you get the third
equation. So, the third equation doesn’t give an extra condition, and we
effectively have two equations. The unknowns are under-determined, as
the equations are not “linearly independent” but “linearly dependent” on
one another. “Linear dependence” means that one of the equations is ex-
pressible in terms of linear combinations of others (i.e. multiplying certain
numbers to other equations and adding them up) which make the former
redundant. Here, we gave you an example in which there are 3 unknowns
and 3 equations, but one can easily imagine that the business gets compli-
cated if the number of the unknowns (i.e. the number of equations) is big.
Actually there is a systematic way to check whether equations are linearly
independent. This is an important concept in mathematics.

In our later article “Row reduction and echelon form,” we will mathe-
matically prove that we need exactly n linearly independent equations if we
have n unknowns. Also, in our later article “Linear independence, linear
dependence and basis,” we will mathematically define linear independence
and linear dependence.

Problem 1. Solve the following equations.

x + y + z = 0 (11)

2x + 3y = 1 − 3z (12)

3x− 2z = −5 (13)

Problem 2. Show that there is no solution to the following equations
(Hint1):

x + 2y − 3z = 4 (14)

2x− y + z = −3 (15)

3x + y − 2z = 0 (16)

Summary

• If you have a system of linear equations with n unknowns, you can
solve it by first getting rid of one of the unknowns and make it a
system of linear equations with n− 1 unknowns. You can repeat this
process to finally get a linear equation with 1 unknown, which you
know how to solve. Then, you can plug it back to the equations one
by one to get all the unknowns.

1Sum the first two equations and compare the result with the third.
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