The three altitudes of a triangle always meet at a point

In an earlier essay, we mentioned that 12-year old Albert Einstein was impressed by the fact that the three altitudes of a triangle always meet at a point, and this can be proven with certainty. In this article, you will be invited to prove by two different methods. I will provide the steps. See the triangle below.

1 Geometric method

In the figure, \overline{AB} and \overline{CF} are perpendicular, and \overline{BE} and \overline{AC} are perpendicular as well. \overline{BE} and \overline{CF} meet at the point H. If you extend the line from A to H, it meets with \overline{BC} at the point D. If we prove that \overline{BC} and \overline{AD} are perpendicular, our job is done.

Problem 1. Explain why $\Box AFHE$ lies in a circle. Thus, we obtain $\angle HAE = \angle HFE$.

Problem 2. Explain why $\Box FECB$ lies in a circle. Thus, we obtain $\angle HFE = \angle HBC$.

Combining the result of Problem 1. and Problem 2. we have $\angle HAE = \angle HBC$. Thus, we obtain $\Box AEDB$ lies in a circle.

Problem 3. From this fact, conclude that \overline{AD} and \overline{BC} are perpendicular to each other.

2 Algebraic method

This time, we will assume that \overline{AD} and \overline{BC} are perpendicular. Then, we will calculate the coordinate of the point \overline{CF} meets with \overline{AD} . And, we will also calculate the coordinate of the point \overline{BE} meets wit \overline{AD} . If these two points are located at the same place, then, our proof is done.

As in the last article, a clever choice of coordinates for A, B, C make the calculation much easier. We will assume that D is located at (0,0), so that the x-coordinate of the two points mentioned are both 0, which make the calculation simpler. We will also assume that B and C are on the x-axis. Given this, we will denote the coordinates of the three vertices as follows:

$$A = (0, a), \qquad B = (b, 0), \qquad C = (c, 0)$$
 (1)

Problem 4. Find the slope of \overline{AB} .

Problem 5. Find the slope of \overline{CF} .

Problem 6. Find the equation of the graph for \overline{CF}

Problem 7. Obtain the point where \overline{CF} meets \overline{AD} by plugging x = 0 to the answer to Problem 6.

Problem 8. Obtain the point where \overline{BE} meets \overline{AC} by exchanging b and c in the answer to Problem 7. Thus, check that the two points are located at the same position.

Summary

• The three altitudes of a triangle always meet at a point.