The three altitudes of a triangle always meet at a point

In an earlier essay, we mentioned that 12-year old Albert Einstein was impressed by the fact that the three altitudes of a triangle always meet at a point, and this can be proven with certainty. In this article, you will be invited to prove by two different methods. I will provide the steps. See the triangle below.

1 Geometric method

In the figure, $\overline{A B}$ and $\overline{C F}$ are perpendicular, and $\overline{B E}$ and $\overline{A C}$ are perpendicular as well. $\overline{B E}$ and $\overline{C F}$ meet at the point H. If you extend the line from A to H, it meets with $\overline{B C}$ at the point D. If we prove that $\overline{B C}$ and $\overline{A D}$ are perpendicular, our job is done.

Problem 1. Explain why $\square A F H E$ lies in a circle. Thus, we obtain $\angle H A E=\angle H F E$.
Problem 2. Explain why $\square F E C B$ lies in a circle. Thus, we obtain $\angle H F E=\angle H B C$.
Combining the result of Problem 1. and Problem 2. we have $\angle H A E=\angle H B C$. Thus, we obtain $\square A E D B$ lies in a circle.

Problem 3. From this fact, conclude that $\overline{A D}$ and $\overline{B C}$ are perpendicular to each other.

2 Algebraic method

This time, we will assume that $\overline{A D}$ and $\overline{B C}$ are perpendicular. Then, we will calculate the coordinate of the point $\overline{C F}$ meets with $\overline{A D}$. And, we will also calculate the coordiante of the point $\overline{B E}$ meets wit $\overline{A D}$. If these two points are located at the same place, then, our proof is done.

As in the last article, a clever choice of coordinates for A, B, C make the calculation much easier. We will assume that D is located at $(0,0)$, so that the x-coordinate of the two
points mentioned are both 0 , which make the calculation simpler. We will also assume that B and C are on the x-axis. Given this, we will denote the coordinates of the three vertices as follows:

$$
\begin{equation*}
A=(0, a), \quad B=(b, 0), \quad C=(c, 0) \tag{1}
\end{equation*}
$$

Problem 4. Find the slope of $\overline{A B}$.
Problem 5. Find the slope of $\overline{C F}$.
Problem 6. Find the equation of the graph for $\overline{C F}$
Problem 7. Obtain the point where $\overline{C F}$ meets $\overline{A D}$ by plugging $x=0$ to the answer to Problem 6.

Problem 8. Obtain the point where $\overline{B E}$ meets $\overline{A C}$ by exchanging b and c in the answer to Problem 7. Thus, check that the two points are located at the same position.

Summary

- The three altitudes of a triangle always meet at a point.

