
The Aharonov-Bohm effect

In this article, we will consider how the presence of magnetic field affects the wave function

of a charged particle. To this end, recall that in such a case Hamiltonian was given as follows:

H =
(~p− q ~A)2

2m
+ qφ (1)

Translating this into quantum mechanics, we have:

Eψ =

(
(−ih̄∇− q ~A)2

2m
+ qφ

)
ψ (2)

Now, let’s say a charged particle with the wave function ψ travels from the point ~ri to

the point ~r in the presence of magnetic field somewhere near the path. Then, how can we

obtain ψ(~r)? To this end, we will say that ψ0(~r) is the wave function solution of the same

Hamiltonian without the presence of magnetic field near the path. Then, we will try to

express ψ(~r) in terms of ψ0(~r) and ~A. In other words,

Eψ0 =

(
(−ih̄∇)2

2m
+ qφ

)
ψ0 (3)

Now, we claim:

ψ(~r) = eifψ0(~r) (4)

where

f =
q

h̄

∫ r

ri

~A(~r′) · d~r′ (5)

where the line integration is done along the path that the particle actually takes.

To prove this, we have to show (Problem 1.):(
−ih̄∇− q ~A

)
ψ = −ih̄eif∇ψ0 (6)

Doing exactly the same thing again, we get:(
−ih̄∇− q ~A

)2
ψ = −eif (−ih̄∇)2ψ0 (7)

Plugging this into (2) and cancelling eif factors, we obtain (3). This completes the proof.

Now comes the question. Could we confirm this phase factor eif experimentally? See Fig.1.

Here, we are performing double slit experiment using electrons, and path 1 and path 2 are

drawn, which have the same length. We could have chosen to draw other paths that have

different lengths, but argument that we will present can carry over to such cases easily, and

for simplicity we consider the same ones.
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Figure 1: Double slit experiment with magnetic field

As you see, the magnetic field is present inside the dotted region. Outside the dotted

region, the magnetic field is not present, including on the path 1 and path 2. Therefore,

at first glance, the presence of magnetic field in dotted region may not seem to affect the

wave function or the phase of the electron, as long as the magnetic field is not present on the

paths; it may seem that there would be a constructive interference at the point C, because

path 1 and path 2 have the same length.

However, this is not true as explicit calculations can show. If the additional phase an

electron gains by going through the path 1 is f1 and the one the path 2 is f2, we have:

f1 =
−e
h̄

∫
path 1

~A · d~r (8)

where −e is the charge of the electron, and we have a similar expression for f2. Now, what

we are interested is neither f1 nor f2 themselves, but their difference as it is the only thing

that matters when one tries to find whether we have constructive interference or destructive

interference. Therefore, we should consider:

f2 − f1 =
−e
h̄

∫
path 2

~A · d~r − −e
h̄

∫
path 1

~A · d~r =
−e
h̄

∫
path 2−path 1

~A · d~r (9)

Now, notice that ∇ × ~A = ~B. Therefore, as we have seen in “Electric potential and vector

potential,” we have:

ΦB =

∫
path 2−path 1

~A · d~r =

∫
M

~B · d ~A (10)

where M is the region bounded by path 1 and path 2. In other words, ΦB is the magnetic flux

in this region. Notice that ΦB is not zero, as magnetic flux is present inside the dotted region

which is inside the region M . Therefore, depending on ΦB we can either have constructive

interference or destructive interference, even though the magnetic field is zero on the actual

paths (i.e. path 1 and path 2) that electrons take. So, this is really bizarre. This is called

“Aharonov-Bohm effect” and was experimentally confirmed.

Problem 2. What value does ΦB have to be to have constructive interference at point

C? How about destructive interference?
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Summary

• Compared to the case in the absence of vector potential, the wave function gains an

extra phase proportional to
∫
~A · d~r.

• This leads to Aharonov-Bohm effect, in which a magnetic field can affect charged parti-

cles despite the absence of the magnetic field in the actual path of the charged particles.
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