
Ashtekar variables

1 Introduction

In this article, we will review Ashtekar variables closely following Quantum Gravity by

Rovelli. This step is important because our construction of our “newer” variables will

closely follow this construction. The convention in this article is as follows. The Lorentz

indices i, j, k take 1, 2, and 3 for their values, and the Lorentz indices I, J , K take 0,

1, 2, and 3 as their values. Also, we use Greek letters for spacetime indices, and a, b, c

for space indices.

2 Self-dual and anti-self-dual

Remember that in four-dimensions, if you take a Hodge dual of an n-form, you get a

(4 − n)-form. Therefore, if you take a Hodge dual of an n-form twice, you will get

an n-form again. Actually, it turns out that so-obtained n-form is proportional to the

original n-form. The proportionality constant is 1 or −1, depending on the number

of dimensions, signature of the metric and n. In case of 2-forms, the proportionality

constant is −1. For examples,

∗ ∗ (e2 ∧ e3) = ∗(e0 ∧ e1) = −e2 ∧ e3 (1)

∗ ∗ (e0 ∧ e1) = ∗(−e2 ∧ e3) = −e0 ∧ e1 (2)

So, for any two-forms, we have ∗∗ = −1. Thus, the eigenvalues of ∗ are i and −i.
The eigenvector with eigenvalue i is called “self-dual” 2-form, and the eigenvector with

eigenvalue −i is called “self-dual.” Thus, any two-form can be written into as a sum of

anti-self-dual part and self-dual part. If we have a two-form A, the self-dual projection

operator P+ and the anti-self-dual projection operator P− are given by

P+ =
1− i∗

2
, P− =

1 + i∗
2

(3)

Then, a 2-form T can be written as

T = P+T + P−T (4)
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where P+T is an self-dual 2-form and P− is a anti-self-dual 2-form.

Problem 1. Check that P+T has indeed an eigenvalue i with respect to the ∗
operator. i.e. ∗P+T = iP−T . Similarly, you can check ∗P−T = −iP−T .

Problem 2. Check that (P±)2 = P±. This implies that once you project a 2-form

into its self-dual part, if you project so-obtained self-dual part once again to its self-dual

part, it will remain same. A similar interpretation can be made about anti-self-dual

projection.

Problem 3. Check that P+P− = 0. This implies that if you project a 2-form into

anti-self-dual part, there will be no self-dual component for the resulting anti-self-dual

2-form.

Anyhow, we can easily see that the basis for self-dual 2-form is given by

Σ1 = e2 ∧ e3 − ie0 ∧ e1 (5)

Σ2 = e3 ∧ e1 − ie0 ∧ e2 (6)

Σ3 = e1 ∧ e2 − ie0 ∧ e3 (7)

In other words,

Σi =
1

2
ε̃ijke

j ∧ ek − ie0 ∧ ei (8)

3 Plebanski formalism

Now, let’s define the self-dual complex SO(3) connection as follows:

A1 = ω32 + iω01 (9)

A2 = ω13 + iω02 (10)

A3 = ω21 + iω03 (11)

As an aside, in the presence of Immirzi parameter, we have:

A1 = −ω32 + γω01 (12)

and similarly for the other components, where γ is Immirzi parameter which is real.

Then, the claim is that the Einstein-Hilbert action is given by

S =
−2i

16πG

∫
Σi ∧ F i (13)

where F is the curvature corresponding to A.

Let’s prove this. If you recall the lesson of the article “Gauge transformation in

dreibein,” the curvature should be given by

F 1 = dA1 +A2 ∧A3 (14)

F 2 = dA2 +A3 ∧A1 (15)

F 3 = dA3 +A1 ∧A2 (16)
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Let’s calculate them explicitly.

F 1 = dA1 +A2 ∧A3 (17)

= dω32 + ω13 ∧ ω21 − ω02 ∧ ω03 + i(dω01 + ω02 ∧ ω21 + ω13 ∧ ω03) (18)

= dω32 + ω31 ∧ ω12 − ω30 ∧ ω02 + i(dω01 + ω02 ∧ ω21 + ω03 ∧ ω31) (19)

= dω32 + ω3
1 ∧ ω12 + ω3

0 ∧ ω02 + i(dω01 + ω0
2 ∧ ω21 + ω0

3 ∧ ω31) (20)

= R32 + iR01 (21)

Similarly, we have:

F i =
1

2
ε̃ilmR

ml + iR0i (22)

We see here that the curvature is self-dual if the connection is self-dual.

Now, let’s calculate

Σi ∧ F i =
i

2
εijke

j ∧ ek ∧R0i +
i

2
εilme

0 ∧ ei ∧Rlm (23)

−1

2
el ∧ em ∧Rlm + e0 ∧ ei ∧R0i (24)

=
i

4
εIJKLe

I ∧ eJ ∧RKL − 1

2
eI ∧ eJ ∧RIJ (25)

The last term in (25) vanishes due to the Bianchi identity. Thus, we conclude (13).

4 Ashtekar formalism

Consider a solution (eIµ(x), AIµ(x)) of the Einstein equations. Choose a 3d surface σ :

−→τ = (τa)→ xµ(−→τ ) without boundaries in the coordinate space. The four-dimensional

forms AI , ΣI and eI induce the following three-dimensional forms.

AI(−→τ ) = AIa(
−→τ )dτa (26)

ΣI(−→τ ) =
1

2
ΣIab(

−→τ )dτa ∧ dτ b (27)

eI(−→τ ) = eIa(
−→τ )dτa (28)

Let’s write eI = (e0, ei). Let’s momentarily choose a gauge in which

e0 = 0 (29)

to obtain the Ashtekar variable Ei in terms of the dreibein part of the vierbein.

In this gauge, from (5), (6), and (7) we have:

Σ1 = e2 ∧ e3

Σ2 = e3 ∧ e1

Σ3 = e1 ∧ e2 (30)
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which is indeed the area two-form. Now, area operator can be re-expressed as

Σi = Ei (31)
1

2
Σi
bcdx

b ∧ dxc =
1

2
Eidε̃dbcdx

b ∧ dxc (32)

Σi
bc = Eidε̃dbc (33)

Multiplying ε̃abc both sides, we obtain

Eia =
1

2
ε̃abcΣi

bc (34)

Furthermore, from

Σi = Ei =
1

2
ε̃ijke

j ∧ ek =
1

2
Σi
bcdx

b ∧ dxc (35)

we have

Σibc = ε̃ijke
j
be
k
c (36)

which, from (34) implies

Eai =
1

2
ε̃abcε̃ijke

j
be
k
c (37)

From this relation, we can also obtain

Eai = (det e)eai (38)

Given this, we can now obtain the action in terms of Ashtekar variables.

S =
−2i

16πG

∫
Σi ∧ F i =

−2i

16πG

∫
1

4
ΣiµνF

i
ρσ ε̃

µνρσd4x

=
−2i

16πG

∫
1

2
(ΣiabF

i
0c + Σi0aF

i
bc)ε̃

abcd4x

=
−i

8πG

∫
(Eci (∂0A

i
c − ∂cAi0 + ε̃ijkA

j
0A

k
c ) + 2(ε̃ijke

j
ae
k
0 + ie00e

i
a + ie0ae

i
0)Fibcε̃

abc)d4x

=
−i

8πG

∫
(Eci Ȧ

i
c +Ai0DcE

c
i + 2(ε̃ijke

j
ae
k
0 + ie00e

i
a)Fibcε̃

abc)d4x (39)

=
−i

8πG

∫
(Eci Ȧ

i
c + Λi(DcE

c
i ) +N b(Eai F

i
ab) + Ñ(ε̃jkiE

a
jE

b
kF

i
ab))d

4x (40)

where from the third line to the fourth line we used integration by parts (i.e. the fact

that the total derivatives do not contribute to the integration) and the gauge condition

e0a = 0. From (39) to (40), we re-labeled the variables. (Problem 1. Derive (40)

from (39) using (33), (36), (37) and (38.) From above action, it is easy to read off the

following Poisson bracket

{Aia(−→τ ), Ebj (
−→τ ′)} = (i)δijδ

b
aδ

3(−→τ ,−→τ ′) (41)

where we have set 8πG = 1. Also, as an action is always an extremum, we must have:

0 =
δS

δΛi
=

δS

δN b
=
δS

δÑ
(42)
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which implies following equations called “constraints.”

DcE
c
i = 0

Eai F
i
ab = 0

ε̃jkiE
a
jE

b
kF

i
ab = 0 (43)

Notice how these constraints are derived. In the action, there are no time derivatives

for Λi, N b, Ñ . So, we simply had (43). It means that Λi, N b, Ñ can be interpreted as

Lagrange multipliers.

The first equation is called “Gaussian constraint,” the second equation is called

“diffeomorphism constraint,” and the third equation is called “Hamiltonian constraint”

or “scalar constraint.”

Now, from (40), let’s find the Hamiltonian. Using

S =

∫
Ldt =

∫
(pq̇ −H)dt (44)

it is given by

H =
i

8πG

∫
(Λi(DcE

c
i ) +N b(Eai F

i
ab) +N(

1

2
ε̃jkiE

a
jE

b
kF

i
ab))d

3x (45)

Notice that the total Hamiltonian is zero. This is expected from the following rea-

son. Remember that in general relativity, the time coordinate (as well as space coordi-

nate) has no intrinsic meaning, because it is just a label that we can freely choose to

parametrize spacetime manifold. As Hamiltonian generates the time translation, which

has no meaning, it should be zero.

From now on, we will denote the Lorentz space indices by vector symbols. Then,

the above Hamiltonian can be written as

H =
1

8πG

(
G(~Λ) +D(N b) +H(N)

)
(46)

where

G(~Λ) = i

∫
d3x~Λ ·Dc

~Ec

D(N b) = i

∫
d3xN b ~Ea · ~Fab

H(Ñ) = i

∫
d3xÑ

1

2
~Fab · ( ~Ea × ~Eb) (47)

Now, let’s find the Poisson bracket of Ashtekar variables with the above three con-

straints. We get

{ ~Aa,G(~Λ)} = Da
~Λ (48)

{ ~Ea,G(~Λ)} = ~Ea × ~Λ (49)
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{ ~Aa,D(N b)} = LNAa − {Aa,G(Nb
~Ab)} (50)

{ ~Ea,D(N b)} = −LNEa + {Ea,G(Nb
~Ab)} (51)

{ ~Aa,H(Ñ)} = Ñ ~Fab × ~Eb (52)

{ ~Ea,H(Ñ)} = −ÑDb( ~E
a × ~Eb) (53)

Now, notice from (48) and (49) that the Gaussian constraint generates the gauge freedom

to choose dreibein and spin connection, which we learned in “Gauge transformations in

dreibein.” We can see the Gaussian constraint from a slightly different point of view as

well. If we denote the wave function by Ψ(Aic), the gauge transformation means

ψ(Aic) = ψ(Aic +DcΛ
i) (54)

which implies ∫
d3xDcΛ

i δψ

δAic
= 0 (55)

Using the fact that taking derivative with respect to Aic is the same thing as multiplying

by its conjugate variable Eci , and using integration by parts, we get∫
d3xΛiDcE

c
i = 0 (56)

Now, let’s move on to the diffeomorphism constraint.

D′(N b) = D(N b)− G(N b ~Ab) (57)

we have

{ ~Aa,D′(N b)} = LNAa, { ~Ea,D′(N b)} = −LNEa (58)

We see that D′ generates diffeomorphism. As both the Gaussian constraint and the

diffeomorphism constraint are zero, they cannot generate physically meaningful evolu-

tion. This is indeed true as both the gauge transformations and the diffeomorphism of

Ashtekar variables are not physically meaningful.

Now, let’s calculate the Poisson brackets between the constraints.

{G(~Λ1),G(~Λ2)} = G(~Λ1 × ~Λ2) (59)

{G(~Λ),D(N b)} = 0 i.e. {G(~Λ),D′(N b) = −G(LN~Λ)} (60)

{G(~Λ),H(Ñ)} = 0 (61)

{D′(Ma), D′(N b)} = D′(LMN b) (62)

{D′(N b),H(M̃)} = H(LNM̃) (63)

{H(Ñ),H(M̃)} = D(Ka) = D′(Ka) + G(Ka ~Aa) (64)

where

Ka = 2 ~Ea · ~Eb(Ñ∂bM̃ − M̃∂bÑ) (65)
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We see that the Poisson brackets of the constraints can be expressed in terms of the

linear combinations of the constraints themselves. In other words, the constraint algebra

is closed. This is an important condition, since Poisson brackets (i.e. commutators) of

zeros should be always zero.

Summary

• The Hodge operator for a 2-form in 4-dimensions has i and −i as the eigenvalue,

as ∗2 = −1. One is called “self-dual” and the other is called “anti-self-dual.”

• The self-dual projection operator and the anti-self-dual projection operator satisfy

P+ + P− = 1, (P±)2 = P±, P+P− = 0

• The curvature of self-dual connection is also self-dual.

• The Einstein-Hilbert action is proportional to Σi ∧ F i.

• The Ashtekar variables A and E are conjugate to each other.

• The Hamiltonian is zero, and is given by the sum of Gaussian constraint, the

diffeomorphism constraint and the Hamiltonian constraint.
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