
The Bose-Einstein distribution, the Fermi-Dirac

distribution and the Maxwell-Boltzmann distribution

This article closely follows the famous textbook Introduction to Quantum Mechanics

by David J. Griffiths. Suppose there are states S1, S2, S3, · · · with one-particle energies

E1, E2, E3, · · · and with degeneracies d1, d2, d3, · · ·. It means that there are d1 number of

S1 states, d2 number of S2 states and so on, and it costs E1 of energy for a single particle to

occupy state S1, and so on. It implies the following. If N1, N2, N3, · · · particles occupy states

S1, S2, S3, · · · respectively, the total number of particles N and the total energy E are given

as follows1:

N =

∞∑
n=1

Nn, E =

∞∑
n=1

NnEn (1)

Given this, Griffiths asks the following question. How many distinct ways are there to achieve

this, given (N1, N2, N3, · · ·)? The answer Q(N1, N2, N3, · · ·) depends on whether the particle

concerned are distinguishable, identical bosons, or identical fermions.

At this point, I would like to remind you that we have considered this problem in two

simple cases in our earlier article “Bosons, Fermions and the statistical properties of identical

particles.” The example given in the main text had

d1 = 2, d2 = d3 = · · · = 0, N1 = 2, N2 = N3 = · · · = 0 (2)

And, for the problem 1 in that article, we had d1 = 2, N1 = 3, and all the other ds and Ns

being zero, and the case being identical bosons.

Now, all we need to do is finding a general expression. First, let qn(Nn, dn) be the number

of ways Nn particles can be distributed over state Sn with dn degeneracy. In other words,

it is the number of ways distributing Nn particles in dn slots. Then, it is easy to see the

following:

Q(N1, N2, N3, · · ·) =

∞∏
n=1

qn(Nn, dn) (3)

where
∏

means multiplying every element similar in a way
∑

means adding every element.

What is qn(Nn, dn) for identical bosons? You can line up the dn slots. Then, we need

dn − 1 screens to distribute Nn particles into the dn slots. Let’s visualize this. For example,

let dn = 5, Nn = 7, and we have the following figure, in which • represents particles and |
represents screens:

•• || • • • | • | • (4)

1N1, N2, N3, · · · are called “occupation numbers.”
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You see that there are two particles in the first slot, zero particle in the second slot, three

particles in the third slot, one particle in the fourth slot, one particle in the fifth slot. So, the

number of qn(Nn, dn) for identical bosons can be obtained by counting how many possible

ways the dn − 1 screens can be placed. There are total Nn + dn − 1 number of screens and

particles, which means that there are total Nn + dn − 1 number of places the screens can be

placed. Therefore, we conclude:

qn(Nn, dn) =

(
Nn + dn − 1

dn − 1

)
=

(Nn + dn − 1)!

(dn − 1)!Nn!
(5)

What is qn(Nn, dn) for identical fermions? At most one particle can occupy each slot. In

other words, if a slot is occupied, it is occupied with one particle. Therefore, among dn slots,

Nn slots are occupied. Of course, it is not important which particles occupy certain slots, as

particles are not distinguishable. Therefore we conclude:

qn(Nn, dn) =

(
dn
Nn

)
=

dn!

Nn!(dn −Nn)!
(6)

In case of distinguishable particles, it is more convenient to dispense with (3) and obtain

Q more directly. As a first step, let’s ignore degeneracies. What is the number of possible

ways to divide N particles to S1, S2, S3 and so on? From the section 2 of our earlier article

“Combination” we know that they are given by

N !

N1!N2!N3! · · ·
= N !

∞∏
n=1

1

Nn!
(7)

Let’s now consider the degeneracies. In the state S1, there are N1 particles and each such

particle can be labeled by any number from 1 to d1. Then, the possible way of labeling

these N1 particles is dN1
1 . And, similarly for S2, S3 and so on. Therefore, multiplying (7) by

dN1
1 dN2

2 dN3
3 · · ·, we get

Q(N1, N2, N3, · · ·) = N !

∞∏
n=1

dNn
n

Nn!
(8)

Now, we will find the most probable Nn given Q(N1, N2, N3, · · ·) for each case and (1).

This is when Q(N1, N2, N3, · · ·) is maximum. This is also the case in which things actu-

ally happen. Remember our discussion in our earlier article “What is entropy? From a

microscopic view” Entropy doesn’t decrease because such a probability is extremely small,

especially when the system concerned is composed of very large numbers of particles. As a

similar example, let’s say you throw a coin 100000 times and count how many heads we will

have. Then, you divide this number by 100000 times. Then, it is very very likely that you

will get a number close to 0.5 as this is most probable; the probability that you will get 0.4

or 0.6 is very small. Cases that are most probable are cases that happen when the number

of particles or the number of experiments is large.

As the maximum of Q occurs when the maximum of lnQ occurs, we can find the latter

instead. However, we have two constraints as in (1). Therefore, we can use the method of
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Lagrange multipliers; we can find the maximum of G which is given by

G ≡ lnQ+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(9)

What we need to do is solving the following equation:

0 =
∂G

∂Nn
(10)

To solve this equation, we assume Nn, dn � 1 and use Sterling’s approximation. In case

of identical bosons, we have:

G =

∞∑
n=1

ln[(Nn+dn−1)!]−ln(Nn!)−ln[(dn−1)!]+α

[
N −

∞∑
n=1

Nn

]
+β

[
E −

∞∑
n=1

NnEn

]
(11)

which means, upon using Sterling’s approximation,

G ≈
∞∑
n=1

{(Nn + dn − 1) ln(Nn + dn − 1)− (Nn + dn − 1)−Nn ln(Nn) +Nn − ln[(dn − 1)!]

−αNn − βEnNn}+ αN + βE (12)

which implies,

0 =
∂G

∂Nn
= ln(Nn + dn − 1)− lnNn − α− βEn (13)

which, in turn, implies:

Nn =
dn − 1

eα+βEn − 1
(14)

However, as dn � 1, we can ignore −1 in the numerator. Moreover, in Stirling’s formula, we

used lnn! ≈
∫ n
0

lnn. If we used lnn! ≈
∫ n+1

1
lnn, −1 in the numerator would be also absent.

In any case, we can write:

Nn =
dn

eα+βEn − 1
(15)

For identical fermions (Problem 1.), we have:

Nn =
dn

eα+βEn + 1
(16)

Notice that Nn is always less than dn in this case, since at most one particle can occupy the

same state. For distinguishable particles (Problem 2.), we have:

Nn =
dn

eα+βEn
(17)

Now, remember in our earlier article “Planck’s law of blackbody radiation,” we had:

〈s〉 =
1

ehf/(kT ) − 1
(18)

Notice that in the notation of this article we have 〈s〉 = N/d. So, this is exactly (15),

provided α = 0 and β = 1/(kT ). In other words, in this article we have derived (18), which

is an intermediary step to derive Planck’s law of blackbody radiation, in another way using
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Lagrange multipliers method. Also, that α = 0 must hold can be seen in the following way.

As the number of photons is not conserved, the first condition of (1) is absent. Therefore,

the second term in (9) must be absent. This can be conveniently done by setting α = 0.

Also, it is customary to write α = −µ/(kT ). µ is called “chemical potential” and can

depend on the temperature. Using this notation (15), (16) and (17) implies that n(ε) the

average number of particles in a particular state (i.e. average “occupation number”) with

energy ε is given as follows (this we can obtain by dividing Nn by number of states dn):

n(ε) =
1

e(ε−µ)/kT − 1
(19)

for bosons,

n(ε) =
1

e(ε−µ)/kT + 1
(20)

for fermions,

n(ε) =
1

e(ε−µ)/kT
= e−(ε−µ)/kT (21)

for distinguishable particles. (19) is called “Bose-Einstein distribution,” (20) is called “Fermi-

Dirac distribution,” (21) is called “Maxwell-Boltzmann distribution.” All these expressions

can be derived by using methods other than Lagrange multipliers. These methods are similar

to the method which we used in deriving (18) in our earlier article “Planck’s law of blackbody

radiation.” We will present one in our later article “The Gibbs free energy revisited.”

Notice also that the Bose-Einstein distribution (19) and the Fermi-Dirac distribution (20)

become approximately equal to (21) in the limit e(ε−µ)/kT is much larger than 1 (i.e. in the

limit n(ε) is small). In other words, in such a limit there is no big difference among the Bose-

Einstein distribution, the Fermi-Dirac distribution and the Maxwell-Boltzmann distribution.

Actually, the concept of identical particles along with the one of bosons and fermions is

quantum mechanical in nature, and not of classical mechanics origin. Before the advent of

quantum mechanics, most physicists, if not all, thought that particles were distinguishable.

Therefore, it is not surprising that Bose, Einstein, Fermi, Dirac were physicists who all

contributed to quantum mechanics in the early 20th century, while Maxwell and Boltzmann

were physicists who contributed to statistical mechanics in the late 19th century, before the

advent of quantum mechanics.

In our earlier article “Kinetic theory of gases” we have calculated the average kinetic

energy of monatomic molecules in terms of the temperature. Now, having learned Maxwell-

Boltzmann distribution, we can do more; we can obtain the speed distribution of monatomic

molecules given temperature. This was first derived by Maxwell in 1860. Let’s derive it.

From our earlier article “Density of states” we know that number of states between the

speed between v and v + dv is given by

d3p d3q

h3
=

4πp2dp V

h3
=

4πm3v2dv V

h3
(22)

To get the actual number of states occupying the speed between v and v + dv, we have to
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multiply this expression by (21). Thus, we get(
4πm3V

h3
eµ/kT

)
dv v2e−mv

2/2kT (23)

Now, let’s calculate the probability distribution P (v)dv for a molecule to have the speed

between v and v + dv if the gaseous molecules have temperature T . Notice that the term in

the parenthesis in the above expression doesn’t depend on the speed of individual molecule v.

In other words, the probability distribution is proportional to dv v2e−mv
2/2kT . This implies,

P (v)dv = Cv2e−mv
2/2kT dv (24)

for some C. As the total probabilities must add up to 1, we have

1 =

∫ ∞
0

P (v)dv = C

∫ ∞
0

v2e−mv
2/2kT dv (25)

Problem 1. Find C. Hint: Use∫
x2e−Ax

2

dx = − ∂

∂A

∫
e−Ax

2

dx

Problem 2. From the explicit form of speed distribution, check that the average kinetic

energy is indeed given by
1

2
mv2 =

3

2
kT (26)

Finally, let me mention that the derivation of the Planck’s law of blackbody radiation (i.e.

the Bose-Einstein distribution with µ = 0) presented in this article was crucial to my research

on Hawking radiation spectrum. We will review it in our later article “Quantum corrections

to Hawking radiation spectrum.” If you have already read “Discrete area spectrum and the

Hawking radiation spectrum II” you will be able to understand it as long as you take granted

some formulas that relate black hole size, mass and temperature.

Summary

• The Bose-Einstein distribution, the Fermi-Dirac distribution, and the Maxwell-Boltzmann

distribution can be derived by finding the most probable occupation numbers.

• n(ε) the average number of particles in a particular state with energy ε is given by

n(ε) =
1

e(ε−µ)/kT ± 1
(27)

The plus sign is for bosons and the minus sign is for fermions. For the Maxwell-

Boltzmann distribution, there is no ±1 part.

• When n(ε) is much smaller than 1, there are not much differences between the BE

distribution, the FD distribution and the MB distribution; the MB distribution can be

used for the BE and FD distribution.
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