
Planck’s law of blackbody radiation

Suppose photons are filled in a box with temperature T . How many photons are there

with given frequency between f and f + df? This is the question we will answer in this

article.

Let’s first think about a single mode (i.e. state) with frequency f . By Planck’s relation,

a photon with frequency with f has energy hf . As a photon is a boson, it is possible that

a multiple number of photons are within the same state. Therefore, the following values of

energy is possible:

E = shf (1)

where s is non-negative integer. It is the number of photons in a given mode. Now, what

is the probability for having s photons in the mode? Remember the Boltzmann factor. The

probability is proportional to exp(−shf/(kT )). Then, the partition function is given as

follows:

Z =

∞∑
s=0

exp(−shf/(kT )) =
1

1− exp(−hf/(kT ))
(2)

If you don’t know how to derive this, please read our earlier article, “the sum of the geometric

series.” Therefore, the probability that there are s photons in this mode is given as follows:

P (s) =
exp(−shf/kT )

Z
(3)

Given this, what is the expectation value for the number of photons in this mode? We

have:

〈s〉 =

∞∑
s=0

sP (s) = Z−1
∞∑
s=0

s exp(−shf/(kT )) (4)

Now, let’s define y ≡ hf/(kT ), for a calculational simplicity. Then, the summation on the

right hand side can be re-expressed as follows:

∞∑
s=0

s exp(−sy) = − d

dy

∞∑
s=0

exp(−sy)

= −dZ
dy

= − d

dy

(
1

1− exp(−y)

)
=

exp(−y)

(1− exp(−y))2
(5)

Plugging this back to (4), we obtain:

〈s〉 =
1

exp(hf/(kT ))− 1
(6)
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We now turn our attention to the density of states. How many states are there between

f and f + df? Remember that the corresponding momentum is given by

p =
E

c
=
hf

c
(7)

Therefore, naively, we must have following number of states:

(4πp2dp)

h3
V =

4πf2df

c3
V (8)

However, there are two polarizations for each state of photon. Therefore, the above formula

should be modified as follows:

2
4πf2df

c3
V (9)

Multiplying (4) by this number, we conclude that between f and f + df , there are following

number of photons:
8πf2df

c3
V

exp(hf/kT )− 1
(10)

In fact, it is known that our universe’s temperature is approximately 2.73 Kelvin. It was first

found out by an accident discovery that the universe is filled with corresponding frequency

of photons. (There are hardly any photons for frequency that satisfies hf >> kT , as the

denominator of (10) would be too small. However, for a very small f the numerator would

be too small. So, there are certain ranges for frequency in which there are many numbers of

photons. This corresponds to hf is in order of kT .). Since energy of photons with frequency

f is given by hf multiplied by the number of photons (i.e. (10)), We can say that du, the

total energy density of photons with frequency between f and f + df is given as follows, :

du =
8πhf3df

c3(exp(hf/kT )− 1)
(11)

Now, another question. How can we relate this to the energy, due to the same frequency

range of photons, radiating from the body? In other words, we want to obtain a formula

for black body radiation. It turns out that the energy emitted during time t concerning the

photon frequency between f and f +Df is given by:

duAt
c

4
(12)

where A is the area of the body. For the derivation, see the appendix at the very end of this

article. Then the energy emitted per unit time, per unit area for the frequency of photons

concerned between f and f + df is given by

du
c

4
=

2πAhf3df

c2(exp(hf/kT )− 1)
(13)

This is known as “Planck’s law of blackbody radiation.”

If you want to calculate the total energy emitted per unit time, per unit area, you can

just integrate the above formula as follows:∫
du
c

4
=

∫ ∞
0

2πAhf3df

c2(exp(hf/kT )− 1)
=

2π5k4

15c2h3
T 4 (14)
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(Problem 1. Using
∫∞
0
x3dx/(ex − 1) = π4/15 derive the above equation. Hint1)

So, the total energy emitted is proportional to the fourth power of temperature. This

is known as “Stefan-Boltzmann law.” Notice where the number four comes from. It comes

from the fact that our world, which we live in, has three spatial dimensions, and four is three

plus one.

Let us conclude this article with some historical remarks. We have seen that the energy

of a single mode is given by:

〈s〉hf =
hf

exp(hf/(kT ))− 1
(15)

However, equipartition theorem, a key theorem in classical statistical mechanics (Remem-

ber our earlier article “Kinetic theory of gases”), predicts that the energy of a single mode

is given by kT since there are two degrees of freedom: potential energy and kinetic energy.

(Notice that the degree of freedom for potential energy was absent for molecules moving in a

box. Photons are different, since it is regarded as harmonic oscillators classically.) One can

check that this agrees with (15) in the limit hf << kT , by Taylor-expanding the exponential

function in the denominator. Nevertheless, for hf >> kT , it clearly deviates from the clas-

sical value kT . This is very important because it makes (14) converged, as the integrand for

high f is suppressed by big denominator exp(hf/kT ) − 1. On the other hand, if the value

kT is used for (15), (14) would have been:∫ ∞
0

2πAkTf2df

c2
(16)

which is infinite due to the divergence of the integrand for high f . This puzzle is called

“ultraviolet catastrophe.” In physics, ultraviolet means high frequency or, equivalently, short

wavelength. Apparently, Planck’s law of blackbody radiation solved this problem. Another

interesting historical fact is that Planck first came up with the law to fit the experimental

data, then later came up with the derivation.

Summary

• The average number of photons in a given mode of frequency f is given by

〈s〉 =
1

ehf/(kT ) − 1

. Therefore, the average energy of photons in a given mode of frequency f is given by

〈s〉hf =
hf

ehf/(kT ) − 1

.

• The number of states between f and f + df is proportional to f2df .

1let x = hf/kT
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Figure 1: Small hole Figure 2: Photons coming out

• All together, the Planck radiation spectrum is proportional to

f3df

ehf/(kT ) − 1

• The total energy of blackbody radiation emitted per unit time, per unit area is propor-

tional to T 4 where T is the blackbody temperature.

Appendix

Let’s say that a box has a small hole with area ∆A, and it is situated in x−z plane. See Fig.1.

Photons randomly moving will accidentally come out of this hole. If the moving direction

of certain photons is parallel to the hole, (i.e. if they are not approaching the hole, and

just passing by) they won’t come out. In other words, if the y component of the velocity of

photon is zero, it won’t come out. Also, if the photons are moving away from the hole, they

won’t come out either. (i.e. if the y component of the velocity of certain photons is negative)

This shows that all that concerned is the y component of the velocity of the photons. Now,

see Fig.2. If a photon has vy for the y component of the velocity and during the time t,

if it happens to be inside the rectangular parallelepiped drawn in the figure, it will come

out. Thus, the energy that comes out during time t is the energy inside the rectangular

parallelepiped, which is given by du∆Avyt. Now, we need to calculate the average of vy. See

Fig.3. We drew a half-sphere with radius 1. We have vy = c cos θ and the probability that

vy will have a value between c cos θ and c cos(θ + dθ) is proportional to the shaded region.

As the total area of the sphere is 4π, the average of vy is given as follows:

〈vy〉 =

∫ π/2

0

c cos θ

(
2π sin θdθ

4π

)
=
c

4
(17)

where the range for θ is chosen so that vy is positive. Therefore, during time t, the energy

emitted is given by:

du∆At
c

4
(18)

This is exactly the formula we wanted to derive.
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Figure 3: Calculation of average of vy
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