
The CMB anisotropy analysis

In our earlier article “History of astronomy from the early 20th century to the early

21st century,” we have sketched how astronomers perform the CMB anisotropy analysis.

In this article, we will explain how they actually do so with real mathematics.

The CMB temperature depends on the direction we are looking at. Let’s call this

direction n̂. Then, the CMB temperature is T (n̂). Then, we define ∆T , the deviation

from the mean temperature by

∆T (n̂) = T (n̂)− T̄ (1)

where T̄ is the CMB temperature averaged over all directions i.e.,

T̄ =
1

4π

∫
d2n̂ T (n̂) (2)

where d2n̂ denotes the standard 2-sphere measure.

Given this, we can express the temperature deviation ∆T (n̂) as a linear combination

of spherical harmonics as follows.

∆T (n̂) =
∑
`m

a`mY
m
` (n̂) (3)

We can easily obtain alm from the orthogonality of the spherical harmonics as follows.

a`m =

∫
d2n̂∆T (n̂)Y m

` (n̂) (4)

Of course a`m depends on our coordinate. What does not depend on our coordinate is

the following

C` ≡ 〈|a`m|2〉 =
1

2`+ 1

∑̀
m=−`

a`ma
∗
`m (5)

However, the cosmological theories cannot predict “C`” precisely, but with some

inherent uncertainties called “cosmic variance.” What the cosmological theories can

predict is the probability distribution of C`. If we had many universes, we could measure

C` in each universe, calculate its average and standard deviation, and compare it with the

average and the standard deviation of C` the cosmological theories predicts. However,

we cannot do so, because we have only one universe to observe C`. Anyhow, the cosmic
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variance decreases for high `, as there are many |a`m|2 to be averaged, namely, (2`+ 1)

one of them, in such a case.

We can express C` directly in terms of ∆T . First, note that ∆T (n̂) is a real number.

Thus, we have

∆T (n̂) =
∑
`m

a∗`mY
m
`
∗(n̂) (6)

which implies

∆T (n̂)∆T (n̂′) =
∑
`m

a`ma
∗
`mY

m
` (n̂)Y m

`
∗(n̂′) =

∑
`

C`

(
2`+ 1

4π

)
P`(n̂ · n̂′) (7)

where we used the addition theorem for spherical harmonics. Then, using the orthogo-

nality of Legendre polynomials∫
d2n̂′P`(n̂ · n̂′)P`′(n̂ · n̂′) =

4π

2`+ 1
δll′ (8)

we obtain

C` =
1

4π

∫
d2n̂d2n̂′ P`(n̂ · n̂′)∆T (n̂)∆T (n̂′) (9)

Notice that C0 is automatically zero by the definition of ∆T (n̂) i.e., (1) and (2).

How about C1?

In our earlier article on the history of astronomy, we mentioned that the peculiar

motion of the Earth relative to the CMB rest frame causes “CMB dipole anisotropy.”

In our earlier article on spherical harmonics, we explained that ` = 1 corresponds to the

dipole moment. So, let’s prove the claim that our peculiar motion causes a non-zero C1.

Recall from the last article that the number of photon is given as follows in the CMB

rest frame.

dN = 2
d3pd3x

h3
1

exp(E/kT )− 1
(10)

where we have E = |p|c, and d3x denotes the volume element. However, as the Earth is

moving relative to the CMB rest frame, we observe different energy and momentum of

photons. If we denote the Earth coordinate by ′, we can write

dN ′ = 2
d3p′d3x′

h3
1

exp(E′/kT ′)− 1
(11)

However, we know that the combination d3pd3x/h3 is Lorentz invariant. It gives you

the number of available state, so it should not depend on the coordinate. As we have

dN = dN ′. We have
E

kT
=

E′

kT ′
(12)

So, let’s find T ′, the CMB temperature we observe on the Earth. For convenience, let’s

choose our cooridnate system that the Earth is moving in z-direction with vz. Then,

the Lorentz transformation says

E′ = γ(E − vzpz), E = γ(E′ + vzp
′
z) (13)
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Thus, we have

T ′ =
T

γ
(

1 + vz
p′z
E′

) (14)

Notice that we expressed T ′ in terms of p′z and E′ instead of pz and E because p′z and

E′ are the ones that we actually observe here on the Earth.

If we look at the direction n̂(θ, φ), the momentum of photon coming from that

direction is given by

p′z = −E
′

c
cos θ (15)

Thus, we obtain

T ′ = T
√

1− β2(1 + β cos θ + β2 cos2 θ + · · · ) (16)

which implies

∆T = T

(
−β

2

6
+ βP1(cos θ) +

2β2

3
P2(cos θ) + · · ·

)
(17)

Problem 1. Check this! Hint: P1(cos θ) = cos θ, P2(cos θ) = (3 cos2 θ − 1)/2

Thus, we see that the CMB dipole anisotropy is on the order of our peculiar velocity

divided by c. From the dipole anisotropy, astronomers obtained β ≈ 0.013, which

corresponds to the speed of 370 km/s.

Of course, in the actual analysis, we cannot presuppose that the Earth is moving in

the z-direction. In the actual analysis, we calculate a10, a1−1 and a11 from (4). This

gives three independent components, which can be related to the three components (i.e.,

x, y, and z) of the velocity of the Earth.

Notice also that the velocity of the Earth also contributes to P2, in other words, to

C2. This contribution is around 10% of actual C2, which is not quite negligible.
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