Density of States

In our earlier article "Infinite potential well," we calculated possible values of momentum of a particle in a box. In this article, we will obtain a formula for the number of possible states, given the range of momentum.

First, we will consider 2 dimensional case, then generalize it to 3 dimensional ones. Remember that we had following formulas:

$$
\begin{equation*}
p_{x}=\frac{n_{x} h}{2 L}, \quad p_{y}=\frac{n_{x} h}{2 L} \tag{1}
\end{equation*}
$$

where n_{x} and n_{y} s are positive integers.
Then, how many states are there between $p_{x 0}<p_{x}<p_{x 0}+\Delta p_{x}$ and $p_{y 0}<p_{y}<p_{y 0}+\Delta p_{y}$? To this end, we have to consider (1). We can re-express this formula as:

$$
\begin{equation*}
n_{x}=\frac{2 p_{x} L}{h}, \quad n_{x}=\frac{2 p_{x} L}{h} \tag{2}
\end{equation*}
$$

Then, we can say that we want to know how many states there are between $n_{x 0}<n_{x}<$ $n_{x 0}+\Delta n_{x}$ and $n_{y 0}<n_{y}<n_{y 0}+\Delta n_{y}$. However, as n_{x} and $n_{y} \mathrm{~s}$ are positive integers, the total number of state is given by $\Delta n_{x} \Delta n_{y}$ if Δn_{x} and Δn_{y} are sufficiently big compared to 1. See, Fig.1. The number of possible states are denoted by dots. Their spacings are 1 as they are positive integers. You also see that there are 30 states, which agree with $\Delta n_{x}=5$ and $\Delta n_{y}=6$

Given this, how many states are there for the total momentum (i.e. $\sqrt{p_{x}^{2}+p_{y}^{2}}$) between p and $p+d p$? First, we translate this into $n \mathrm{~s}$ as follows using (2):

$$
\begin{equation*}
n=\frac{2 p L}{h}, \quad d n=\frac{2 L d p}{h} \tag{3}
\end{equation*}
$$

Figure 1: $\Delta n_{x} \Delta n_{y}=5 \times 6=30$ states

Figure 2: $(\pi n / 2) d n$ states

We also have:

$$
\begin{equation*}
n^{2}<n_{x}^{2}+n_{y}^{2}<(n+d n)^{2} \tag{4}
\end{equation*}
$$

This is drawn on Fig.2. Remembering our earlier argument explained no Fig.1, we conclude that the shaded area in Fig. 2 gives the number of states. Interpreting it as a "bent rectangle" with width $(\pi n / 2)$ (i.e. the length of the arc) and height $d n$, the number of states is given as follows:

$$
\begin{equation*}
\frac{\pi n}{2} d n \tag{5}
\end{equation*}
$$

This is true for very small $d n$. Plugging (3), we conclude that between p and $p+d p$, there are

$$
\begin{equation*}
\frac{2 \pi L^{2}}{h^{2}} p d p \tag{6}
\end{equation*}
$$

states.
We can repeat this process for 3 dimensional case as well. The number of states is then given by $\Delta n_{x} \Delta n_{y} \Delta n_{z}$ and between n and $n+d n$, there are

$$
\begin{equation*}
\frac{4 \pi n^{2}}{8} d n \tag{7}
\end{equation*}
$$

since the surface area of sphere is $4 \pi n^{2}$ and n_{x}, n_{y}, n_{z} s being positive implies we are considering one-eighth of the sphere, and we can consider the concerned region as a "bent rectangular box" with base $\left(4 \pi n^{2}\right) / 8$ and height $d n$.

Using (3), we conclude, between momentum p and $p+d p$, there are

$$
\begin{equation*}
\frac{\left(4 \pi p^{2} d p\right)}{h^{3}} L^{3} \tag{8}
\end{equation*}
$$

number of states. Using the fact that the volume of the box V is given by L^{3}, we can re-express the above formula as

$$
\begin{equation*}
\frac{\left(4 \pi p^{2} d p\right)}{h^{3}} V \tag{9}
\end{equation*}
$$

We have derived this formula assuming that the particle is in a box with the shape a cube, but it is worth remarking that the above formula is valid for any shape of box. Actually, there is a still better way to express the above formula. Expressing $4 \pi p^{2} d p=d^{3} p$, which is the familiar volume element for p (Here, we release the previous condition that p_{x}, p_{y}, p_{z} must be positive. They are now allowed to be negative. ${ }^{1}$) and $V=\int d^{3} x,(9)$ can be re-expressed as

$$
\begin{equation*}
\frac{d^{3} p d^{3} x}{h^{3}}=\left(\frac{d p_{x} d x}{h}\right)\left(\frac{d p_{y} d y}{h}\right)\left(\frac{d p_{z} d z}{h}\right) \tag{10}
\end{equation*}
$$

In conclusion, the small cell $\Delta p_{x} \Delta x=\Delta p_{y} \Delta y=\Delta p_{z} \Delta z=h$ is one unit.

Summary

- The density of state is given by $\frac{d^{3} p d^{3} x}{h^{3}}$.

[^0]
[^0]: ${ }^{1}$ If you think carefully, p_{x} and p_{y} in (1) are just the absolute values of real p_{x} and p_{y}. We set n_{x} and n_{y} to be positive.

