
The Helmholtz free energy, the enthalpy, and the Gibbs

free energy

In this article, we will introduce the Helmholtz free energy, the enthalpy, and the Gibbs

free energy.

First, recall the following basic thermodynamic relation.

dU = TdS − PdV (1)

This shows

T =

(
∂U

∂S

)
V

, P = −
(
∂U

∂V

)
S

(2)

Here, the subscript V and S mean that they are held constant respectively i.e., dV = 0 and

dS = 0. If V is constant, we can write

dU = TdS = dQ (3)

where Q is the heat transferred under a constant volume. Thus, if we let the molar specific

heat at constant volume by Cv, then we can write

dU = TdS = dQ = nCvdT (4)

which implies

Cv =
1

n

dU

dT
(5)

The energy U is a function of S and V in (1). It satisfies dU = 0 when dS = 0 and

dV = 0, i.e., when S and V are held constant. However, we do not always maintain S

constant. Sometimes, it is easier to hold T constant. Could we define a quantity that is more

convenient when T and V are maintained constant?

In this context, let’s define the Helmholtz free energy F by

F = U − TS (6)

Let’s consider its differential dF . Using (1), we have

dF = dU − TdS − SdT = −PdV − SdT (7)

which implies

P = −
(
∂F

∂V

)
T

, S = −
(
∂F

∂T

)
V

(8)

Now, F is a function of V and T and dF = 0 when V and T are constant.
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Similarly, let us introduce a quantity that is more convenient when P and S are constant.

We define the enthalpy H by

H = U + PV (9)

which implies

dH = dU + PdV + V dP = TdS + V dP (10)

T =

(
∂H

∂S

)
P

, V =

(
∂H

∂P

)
S

(11)

If the system is in a constant pressure, we have dP = 0. Then, we can write

dH = TdS = dQ (12)

where Q is the heat transferred under a constant pressure. Thus, if we let the molar specific

heat at constant pressure by Cp, then we can write

dH = TdS = dQ = nCpdT (13)

which implies

Cp =
1

n

dH

dT
(14)

Thus, we see that H is a natural quantity for energy when the system is in a constant

pressure. Most chemical reactions in a laboratory are performed in such a situation. Thus,

enthalpy is often used in chemistry. When I first encountered enthalpy, I thought that it was

some kind of variation of entropy as it sounds similar. No, it isn’t. It is some kind of energy.

Finally, a quantity that is convenient when we deal with a constant pressure and a constant

temperature: The Gibbs free energy is defined by

G = U − TS + PV (15)

which implies (Problem 1. Check this!)

dG = V dP − SdT (16)

V =

(
∂G

∂P

)
T

, S = −
(
∂G

∂T

)
P

(17)

We see that we have dG = 0 when dP = 0 and dT = 0 are satisfied.

Now, let’s come to our earlier conclusion slightly differently. Recall that S is maximized

(i.e., dS = 0) for a closed system. Similarly, what is maximized or minimized when the

system has a constant volume (i.e., dV = 0), but is in an outside thermal contact with

infinite thermal reservoir of temperature T? This is when the system is in a constant T . In

other words, even though the system emits or absorbs energy from the thermal reservoir, the

thermal reservoir has such a big heat capacity that its temperature doesn’t change. Given

this, we will now show that dF = 0 when they reach a thermal equilibrium. As we have

dT = 0 in such a case, we have

dF = dU − TdS − SdT = dU − TdS (18)
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However, if we plug in (2) to the above equation, we get dF = 0.

Actually, we can show that F is minimum. Let’s call the energy of the system by Usys and

the energy of the reservoir by Ures, and their entropy by Ssys and Sres respectively. Then,

the total energy is

U = Ures + Usys (19)

Given this, the total entropy is given by

S = Sres + Ssys = Sres(U − Usys) + Ssys(Usys) (20)

= Sres(U)− Usys

(
∂Sres

∂Ures

)
V

+ Ssys(Usys) (21)

= Sres(U)− Usys
1

T
+ Ssys(Usys) (22)

= Sres(U)− Fsys

T
(23)

Notice that Sres(U) is just a constant, because U is a constant as the total energy of the

reservoir and the system is conserved. As the entropy S is always maximized, we see that F

has to be minimized.

Problem 2. Show that Cp = Cv + R is satisfied for an ideal gas by using (5), (9) and

(14).

Problem 3. From the fact that partial derivative commute, i.e.,

∂2U

∂S∂V
=

∂2U

∂S∂V
(24)

by using (2), derive the following relation(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(25)

Notice also that we can obtain three more similar relations from (2), (8) and (11).

There was a tacit assumption in this article. That the system doesn’t exchange the

actual particles with the outside world, even though they may exchange energy (in case of

the Hemlholtz free energy, and the Gibbs free energy) or the volume changes (in case of the

enthalpy and the Gibbs free energy). In a later article, we will see what happens if we relax

this condition.

Summary

� The Helmholtz free energy is defined by

F = U − TS

� The enthalpy is defined by

H = U + PV
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� The Gibbs free energy is defined by

G = U − TS + PV

� We can express their differentials dF , dH, dG in terms of the thermodynamic quantities

by using the relation dU = TdS − PdV .

� Just as dS = 0 is satisfied when a closed system reaches the equilibrium, dF = 0 is

satisfied when an otherwise closed system with a thermal contact in thermal reservoir

reaches the equilibrium. Similarly, dH = 0 is satisfied when an otherwise closed system

provided with a constant pressure reaches the equilibrium, and dG = 0 is satisfied

when an otherwise closed system with a thermal contact in thermal equilibrium with

constant outside pressure reaches the equilibrium
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