
What is a Feynman diagram?

In earlier articles, I explained what the expectation values in quantum field theory mean.

Just to recap, and to introduce a more systematic notation, let me rewrite the formula here.

〈f (x1, x2, x3, . . . xn)〉 =

∫∞
−∞ f(x1, x2 . . . xn)exp[−S (x1, x2 . . . xn)]dnx∫∞

−∞ exp[−S (x1, x2 . . . xn)]d
n
x

(1)

Here, both f and S are assumed to be polynomials. If they aren’t, one can always make

them polynomials by using Taylor series and ignore higher order terms. Of course, one must

assume the convergence of the Taylor series, and the sum of order by order expansions on

the right-hand side will also converge, but for the present purpose, let’s assume that they do.

In such a case, physicists say that “the perturbative expansions are valid.”

For simplicity, let’s also assume that the terms linear in x are absent from S. One can

always make it so by redefining the variable x.

If S is quadratic in x, we call such a theory “free.” If S has higher order terms in x, we

say that such a theory has interactions.

Now, I will explain what Feynman diagram is. Let us consider the simpler case of a free

theory first, before delving into the interacting theory. Let f (x1, x2, x3, . . . xn) = x1x2, and

S (x1, x2 . . . xn) =
Aij

2
xixj . Then, we have:

∫ ∞
−∞

x1x2e
−

Aij
2 xixj+Bix

i

dnx =

√
(2π)

n

detA

∂2e
1
2B

TA−1B

∂B1∂B2
=

√
(2π)

n

detA

∂[(A−1)
1j
Bj e

1
2B

TA−1B
]

∂B2

=

√
(2π)

n

detA
[
(
A−1

)12
+
(
A−1

)1j
Bj

(
A−1

)2k
Bk ]e

1
2B

TA−1B (2)

Here,
(
A−1

)jk
denotes (j, k) components of the inverse matrix of A. By setting Bs equal to

zero, and dividing this expression by
∫∞
−∞ e−

Aij
2 xixj

dnx, we obtain the following:

〈x1x2〉 =
(
A−1

)12
(3)

We denote this value by the following Feynman diagram:
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The line denotes A−1 and the numbers indicate that they are (1, 2) component of this

matrix. Such prescriptions for the value of Feynman diagrams are called “Feynman rules.”

Now, let’s consider a slightly more complicated case. Let f (x1, x2, x3, . . . xn) = x1x2x3x4

Then we get:

〈x1x2x3x4〉 =
(
A−1

)12(
A−1

)34
+
(
A−1

)13(
A−1

)24
+
(
A−1

)14(
A−1

)23
(4)

The proof is left as an exercise to the readers. I strongly encourage you to do this calculation

so that you can see how it works. Feynman diagrams for this expectation value are following.

The basic idea is that you choose all possible contractions; that is you connect pairs of

points in all possible ways such that each point lies on exactly one line. One can pictorially

represent this as follows:

〈x1x2x3x4〉 = x1x2x3x4 + x1x2x3x4 + x1x2x3x4

= 〈x1x2〉〈x3x4〉+ 〈x1x3〉〈x2x4〉+ 〈x1x4〉〈x2x3〉 (5)

By similar reasoning, we have:

〈x1x2x3〉 = 0 (6)

Since there are an odd number of points (1, 2, 3), in all possible contractions, one point is

always left out. Pictorially, we can represent this as the following.

〈x1x2x3〉 = 〈x1x2x3〉+ 〈x1x2x3〉+ 〈x1x2x3〉 = 0 (7)
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So, this expectation value has to be 0. For the same reason, the expectation value for an odd

number of xs is always zero in a free theory.

Now, we consider the interacting case. Let

S = [−
∑
i

λixi
4] +

Aij

2
xixj (8)

For simplicity, we will consider the case that λi = 0 for i = 1, 2, 3, 4 and λi = λ otherwise.

Then, for the expectation value of four xs, which physicists call “four-point function,” we

have the following.

〈x1x2x3x4〉int =

∫∞
−∞ x1x2x3x4 exp [

{∑
i λixi

4
}
− Aij

2 xixj ]d
nx∫∞

−∞ exp [ {
∑

i λixi
4} − Aij

2 xixj ]dnx
(9)

Here, “int” denotes that the theory is interacting. Let’s calculate this expectation value up

to the first order in λ, via a Taylor expansion:

〈x1x2x3x4〉int =
〈x1x2x3x4〉+ 〈x1x2x3x4

∑
i λixi

4〉+ . . .

1 + 〈
∑

i λixi
4〉+ . . .

(10)

The first term in the numerator gives the result of free theory. The first term in the denom-

inator is 1 and the second term in the denominator gives the following:∑
i

λi〈x4i 〉 =
∑
i

λi[xixixixi + xixixixi + xixixixi] =
∑
i

3λi〈xixi〉2

We can represent this by the following Feynman diagram:

Notice that we can create another Feynman rule saying that a vertex with four out-going

lines corresponds to a factor of λ. Actually, we have extra factor of 3 here, but let’s ignore it

as it is beyond the scope of this article, even though there is a way to count this extra factor

from the Feynman diagram. Now, we calculate the second term of the numerator. We get:

〈x1x2x3x4
∑
i

λixi
4〉 = 〈x1x2x3x4〉〈

∑
i

λixi
4〉+

∑
i

4!λi〈x1xi〉〈x2xi〉〈x3xi〉〈x4xi〉

+
∑
i

12λi〈xixi〉
[
〈x1x2〉〈x3xi〉〈x4xi〉+ 〈x1x3〉〈x2xi〉〈x4xi〉+ 〈x1x4〉〈x2xi〉〈x3xi〉

〈x2x3〉〈x1xi〉〈x4xi〉+ 〈x2x4〉〈x1xi〉〈x3xi〉+ 〈x3x4〉〈x1xi〉〈x2xi〉
]

(11)
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The factor 4! comes out because there are 4! ways to contract x1, x2, x3, x4 with xis. The

factor 12 comes out because there are 4 × 3 ways to contract x3, x4 with xis and so on. To

express the above formula using a Feynman diagram, we write:
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Finally, putting the denominator and numerator together, we get:

〈x1x2x3x4〉int = 〈x1x2x3x4〉+
∑
i

4!λi〈x1xi〉〈x2xi〉〈x3xi〉〈x4xi〉

+
∑
i

12λi〈xixi〉
[
〈x1x2〉〈x3xi〉〈x4xi〉+ 〈x1x3〉〈x2xi〉〈x4xi〉+ 〈x1x4〉〈x2xi〉〈x3xi〉

〈x2x3〉〈x1xi〉〈x4xi〉+ 〈x2x4〉〈x1xi〉〈x3xi〉+ 〈x3x4〉〈x1xi〉〈x2xi〉
]

+O(λ2) (12)

In Feynman diagrams, we can represent them as:

This is neat, as the awkward diagrams such as “8” are canceled out, and not present in the
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final Feynman diagrams. But, is this a coincidence? Why are they canceled out? Actually,

it’s how the denominator of (9) is destined to work. Let me explain this in more detail.

There are two kinds of points in the Feynman diagrams: external points and internal

points. Each external point such as x1, x2, x3 and x4 is connected to only one other point

while each internal point such as xi is connected to more than one other points. As the

denominator doesn’t have any x1, x2, x3, x4, the corresponding Feynman diagrams don’t have

any external points but only have internal points. Possible Feynman diagrams are drawn in

Fig.6. They are sometimes called “vacuum bubbles.”

On the other hand, each Feynman diagram for the numerator has four external points.

Each Feynman diagram is a product of (one or more) sub-diagrams, of which the number of

the external points sums up to four. Therefore, some of these sub-diagrams can be vacuum

bubbles, which have no external points. Therefore, the vacuum bubbles factor can be factored

out and canceled out when divided by the denominator. Fig. 7 is the example.

So far, I have described the mathematical aspects of Feynman diagrams. Let me describe

now their physical aspects. The two point function 〈xixj〉, or equivalently,
(
A−1

)ij
is called

“the propagator.” It is related to the amplitude that a particle located at the point xi moves

to xj . Similarly, the four-point function is related to the amplitude that two particles move

from two points to two other points. Notice that in the case of a free theory, like that of Fig.
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2, these two particles do not interact each other, as the two lines never meet and is simply

given by the sum of products of two propagators. However, if there is an interaction, the

Feynman diagrams include the diagrams which include lines that meet each other such as

“×” diagram of Fig. 5.

Problem 1. Draw all possible types for Feynman diagrams for 〈x1x2x3x4〉int in λ2 order.

(i.e. you don’t need to label the points by 1, 2, 3, 4, i and so on.)

Summary

• 〈f (x1, x2, x3, . . . xn)〉 =

∫∞
−∞ f(x1, x2 . . . xn)exp[−S (x1, x2 . . . xn)]dnx∫∞

−∞ exp[−S (x1, x2 . . . xn)]d
n
x

• If S (x1, x2 . . . xn) =
Aij

2
xixj , then 〈x1x2〉 =

(
A−1

)12
.

And 〈x1x2x3x4〉 = x1x2x3x4 + x1x2x3x4 + x1x2x3x4

= 〈x1x2〉〈x3x4〉+ 〈x1x3〉〈x2x4〉+ 〈x1x4〉〈x2x3〉. i.e. all the possible contractions.

Notice also that 〈x1x2x3〉 is zero, because there is always un-contracted x, since there

are odd number of points.

• If you have x4 interactions, its Feynman diagram can be represented by a point, which

has four legs that can be connected (i.e. contracted) to themselves or any other points.

• When you calculate the expectation value in interacting theory, vacuum bubbles are

canceled out because the same factors appear in both the denominator and the numer-

ator in the definition of the expectation value.
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