
Fourier transformations

A Fourier series is a way to represent a periodic function by an infinite
sum of sine and cosine functions. For example, let us consider a periodic
function f(t) for which f(t) = f(t+T ). Naturally, the period of this function
is T . We can write such a periodic function as an infinite sum of sine and
cosine functions as follows.

f(t) =
a0
2

+

∞∑
n=1

[
an cos

(
2π

T
nt

)
+ bn sin

(
2π

T
nt

)]
(1)

You can easily check that this function satisfies the condition f(t) =
f(t + T ). Now, for simplicity, let us consider the case when T = 2π. The
generalization to an arbitrary T is straightforward. In this case, f(t) can be
expressed as

f(t) =
a0
2

+
∞∑
n=1

[an cos (nt) + bn sin (nt)] (2)

(You will see why it is convenient to include the factor 1
2 in front of a0

shortly.) Now, let’s multiply both sides by cos(mt) and integrate from 0 to
2π, where m is a non-negative integer. Then we get∫ 2π

0
f(t) cos(mt)dt =

a0
2

∫ 2π

0
cos(mt)dt

+
∞∑
n=1

[
an

∫
cos(nt) cos(mt)dt+ bn

∫
sin(nt) cos(mt)dt

]
To perform these integrations, the following formulas are useful.

cos(nt) cos(mt) =
1

2
[cos(n+m)t+ cos(n−m)t] (3)

sin(nt) cos(mt) =
1

2
[sin(n+m)t+ sin(n−m)t] (4)

We also need to use the following: (Problem 1. Check this!)∫ 2π

0
sin(kt)dt =

∫ 2π

0
cos(kt)dt = 0 for a nonzero integer k (5)∫ 2π

0
sin(kt)dt = 0,

∫ 2π

0
cos(kt)dt = 2π for k = 0 (6)

1



Problem 2. Show (7), (8), and (9)! (m,n both positive integers)∫ 2π

0
cos(nt) cos(mt)dt = 0 (if m 6= n), π (if m = n) (7)∫ 2π

0
sin(nt) cos(mt)dt = 0 (8)

Thus, the only term that survives upon integration is the following∫ 2π

0
f(t) cos(mt)dx = πam (9)

for both when m = 0 and when m > 0. (You have to check these two cases
separately.) Let’s re-write this expression slightly differently. We have

am =
1

π

∫ 2π

0
f(t) cos(mt)dt (10)

Similarly, by multiplying both sides of (2) by sin(mt) and following similar
steps, we get

bm =
1

π

∫ 2π

0
f(t) sin(mt)dt (11)

In other words, we have found a way to obtain the coefficients in the
Fourier series. Or, we could express the above formulas slightly differently
(Problem 3. From (10) and (11), show the following! Hint1)

am =
1

π

∫ π

−π
f(t) cos(mt)dt, bm =

1

π

∫ π

−π
f(t) sin(mt)dt (12)

When we derive all this again in “Revisiting Fourier transformation,” you
will get a better perspective on the Fourier transformation.

Anyhow, in the general case (1) with arbitrary T , (12) becomes

am =
2

T

∫ T/2

−T/2
f(t) cos

(
2π

T
mt

)
dt (13)

bm =
2

T

∫ T/2

−T/2
f(t) sin

(
2π

T
mt

)
dt (14)

You can easily check that the above formulas make sense without doing the
same calculation all again by thinking along the following way. It is natural
that you need to integrate f(t) over one cycle. That’s how the integration
range is determined. From (1), you see that the “average” of f(t) over one

1Use f(t+ 2π) = f(t) and cos(m(t+ 2π)) = cos(mt) and sin(m(t+ 2π)) = sin(mt).
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period is a0/2, because the cosine and sine functions have positive values
and negative values which make them 0 on average. Therefore, we have

a0
2

=
1

T

∫ T/2

−T/2
f(t)dt → a0 =

2

T

∫ T/2

−T/2
f(t)dt (15)

By comparing this with am of (12), we can easily guess (13). Indeed, when
T = 2π, the factor 1/π = 2/T comes correctly. Then, we can conclude (14)
is also correct because the factor 2

T needs to be universal for both (13) and
(14), as the factor 1

π is universal for both am and bm in (12).
Instead of using sine and cosine functions, we can re-express all these

results using complex numbers by considering Euler’s formula eiθ = cos θ +
i sin θ. Using

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
(16)

(1) can be re-expressed as

f(t) =

∞∑
n=0

(
Ane

2πi
T
nt +Bne

− 2πi
T
nt
)

(17)

where
1

2
(an − ibn) = An,

1

2
(an + ibn) = Bn (18)

Similarly, (13) and (14) become

An =
1

T

∫ T/2

−T/2
f(t)e−

2πi
T
ntdt, Bn =

1

T

∫ T/2

−T/2
f(t)e

2πi
T
ntdt (19)

(Problem 4. Show (17), (18), and (19)!) We can write all these relations
even more compactly. Let

Cn ≡ An for n > 0, C0 ≡ A0 +B0 (20)

Cn ≡ B−n for n < 0 (21)

Then, (17) and (19) become

f(t) =
∞∑

n=−∞
Cne

2πi
T
nt (22)

Cn =
1

T

∫ T/2

−T/2
f(t)e−

2πi
T
ntdt (23)

Fourier transformation can be generalized to the case of a non-periodic func-
tion if the period is allowed to become infinite (i.e., T → ∞). In this case,
the infinite sum in (22) is replaced with an integral. i.e.,

f(t) =

∫ ∞
−∞

Cne
2πi
T
ntdn (24)
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Now, let

ω ≡ 2π

T
n, f̃(ω) =

T

2π
Cn (25)

then, (22) and (23) become

f(t) =

∫ ∞
−∞

f̃(ω)eiωtdω (26)

f̃(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt (27)

So, this is very elegant. The Fourier transformation looks very symmetric!
If you want, you can make it more symmetric by including 1/

√
2π factor in

the right-hand side of (26). For example,

g(t) =
1√
2π

∫ ∞
−∞

g̃(ω)eiωtdω, g̃(ω) =
1√
2π

∫ ∞
−∞

g(t)e−iωtdt (28)

As we will see, formulas (28) play a central role in quantum mechanics.
There, we will also see that this symmetricity in Fourier transformation can
be also obtained from complex conjugation. It is always amazing to see a
same mathematical formula from different perspectives.

Problem 4. Find Fourier coefficients (i.e. (10) and (11)) for the follow-
ing graph.

Summary

• If

f(t) =
a0
2

+
∞∑
n=1

[an cos (nt) + bn sin (nt)]

the Fourier coefficients an and bn are obtained by considering the in-
tegrations ∫ 2π

0
f(t) cos(nt)dx and

∫ 2π

0
f(x) sin(nt)dt
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• If

f(t) =

∫ ∞
−∞

f̃(ω)eiωtdω

we have

f̃(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt
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