
The Gauss-Bonnet theorem for triangle on a sphere

In our earlier article “Curved space,” we promised to obtain an expression for the area of a

triangle on a sphere in terms of the sum of its angles. For simplicity, we will consider a sphere

with area 720. You will soon see why the calculation is simple in this case. For spheres with

other area, you can simply multiply the area of triangle in this case by appropriate factors.

Figure 1: Two great circles dividing the sphere in four diangles. The diangle delimited by

the blue and red curves has both angles θ.

To begin with, let’s first consider the area of “diangle.” A diangle is an object that has

two sides and two vertices, just like a triangle is an object that has three sides and three

vertices, and a quadrangle four sides and four vertices. Even though diangles cannot exist

on a flat space, it can exist on a sphere. See Fig. 1. You see a sphere with two great circles.

These two great circles divide the sphere into four diangles: a diangle with the blue side and

the red side, a diangle with the red side and the green side, a diangle with the green side and

the yellow side, and a diangle with the yellow side and the blue side. Here, it is very easy

to see that the diangle with the blue side and the red side is congruent to (i.e., having the

same shape and the same size) the diangle with the green side and the yellow side. Likewise,

the diangle with the red side and the green side is congruent to the diangle with the blue

side and the yellow side. Notice also that the two angles of a diangle are always the same.

For example, in the diangle with the blue side and the red side, the two angles are both θ as

marked in the figure.

What are the areas of these triangles? First of all, remember that a great circle divides
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a sphere into two equal half-spheres. As 360 is the area of each half-sphere, we have

The area of blue red diangle + the area of red green diangle = 360 (1)

As each angle of the blue-red diangle is θ, each angle of the red-green diangle is given by

180◦ − θ. In other words, we have

The angle of blue red diangle + the angle of red green diangle = 180◦ (2)

θ + (180◦ − θ) = 180 (3)

Now, observe that the blue-red diangle can be sliced into the same θ diangles with each

angle 1◦; we can simply divide the angle θ of the blue-red diangle into θ copies of 1◦. Simi-

larly, the red-green diangle can be sliced into the same 180 − θ diangles with each angle 1◦.

Therefore, the blue-red diangle has θ times the area of the diangle with angle 1◦, and the

red-green diangle has 180−θ times the area of the diangle with angle 1◦. Therefore, the sum

of the areas of these two diangles is 180 times the area of the diangle with angle 1◦. If we

now recall that this sum is 360, we conclude that the diangle with angle 1◦ has the area 2.

Therefore, we conclude the blue-red diangle has area 2θ and the red-green diangle 2(180−θ).

Figure 2: Three great circles forming the triangle A, with angles a, b and c. The two blue

regions correspond to two different diangles that have the same angle b. These two diangles

continue behind the sphere and meet at one of the vertices of a triangle there, just as they

meet at one of the vertices of a triangle on the front side. (This vertex is marked with the

angle b.) Similar statements can be made about the red and yellow regions, corresponding

to the angles c and a, respectively

Now, we are fully ready to attack the problem. See Fig. 2. You see a sphere with

three great circles, which form a triangle with angles a, b, c. The triangle has area A. For

convenience, I didn’t draw the other side of the sphere. Therefore, we only see the half of

the sphere now. Nevertheless, it doesn’t matter at all. If you look this sphere from the other

side, you will see exactly the same picture as in Fig. 2, but with the direction reversed.

Notice now that we see part of two diangles with angle a in Fig. 2. As each of these two

diangles has area 2a, their total area is 4a. Of course, we do not know the area of each part
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visible in Fig. 2, but if we add them that should be the half of the area of these two diangles,

as we can see the other half from the opposite side. Therefore, the total area of the parts

you see of these two diangles is half of 4a, which is 2a. This implies that the total area of

the yellow regions is 2a− A. Similarly, the total area of the blue regions is 2b− A, and the

one of the red is 2c−A. As the area of half-sphere we see is 360, we must have the following

relation:

The yellow area + the blue area + the red area +A = 360 (4)

(2a−A) + (2b−A) + (2c−A) +A = 360 (5)

2a+ 2b+ 2c− 2A = 360 (6)

Another way of saying (6) is that the half of the two diangles with angle a, the half of

the two diangles with angle b and the half of the two diangles c cover the area A three times,

when we sum their areas to calculate the area of half-sphere. Notice that we should have

included the area A only once. Thus, we have included it twice more. Thus, to caculate the

area of half-sphere, we have to subtract 2A from the sum of all the areas of these diangles.

In other words,

2a+ 2b+ 2c− 2A = 360 (7)

which is exactly (6). In conclusion, we have

A = (a+ b+ c) − 180 (8)

In other words, if we denote the sum of the three angles of a triangle by S, we have

A = S − 180 (9)

Here, we can see that if the area of triangle A is very small, the sum of the angle is very

close to 180◦. As mentioned in an earlier article, this means that, when the triangle is very

small, the effect of curvature is negligible and the triangle can be practically regarded as

lying on a flat surface.

Problem 1. Remember that the above expression is valid only for the sphere with area

720. How will the above relation change, if the sphere has double the area, i.e., 1440? Or,

more generally, how will the above relation change for sphere with the area 4πr2? (i.e., a

sphere with radius r)

Problem 2. In the earlier article “Similarity of triangle,” we learned that two triangles

(on a flat plane) are similar if two angles of one triangle are the same as two angles of the

other triangle. Is this criterion of similarity also valid for triangles on a sphere? Explain your

reasoning.

Problem 3. Explain why two triangles on a sphere are congruent, if the three angles

of one triangle are the same as the ones of the other. Explain also why this criterion for

congruency doesn’t work for two triangles on a flat plane.
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Problem 4. Explain why it is impossible that two triangles on a sphere is not congruent,

but similar.

Final comment. The relation that we found in this article can be derived from the Gauss-

Bonnet theorem introduced in an earlier article. Therefore, the title of this article. In this

article, we considered the case of surface with constant positive curvature i.e., a sphere. In

case of a surface with constant negative curvature, the area of triangle is proportional to

180 − S. In other words, the bigger the triangle the smaller the sum of its three angles. Or,

the closer the sum of the angles is to 180◦, the smaller the triangle.

Problem 5. Explain why there is a maximum limit for the area of triangle on a surface

with consant negative curvature.

Summary

• The area of a triangle on a sphere is proportional to S − 180◦, where S is the sum of

its three angles.

• Two triangles on a sphere are congruent, if the three angles of one triangle are the same

as the three angles of the other triangle.
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