
The Gibbs paradox

In this article, we will calculate the partition function of an ideal gas in a “naive” wrong

way, and calculate the various thermodynamic quantities. Then, we will notice that the

partion function gives all the correct answers except for entropy. Finally, we will fix our

mistake, and obtain the correct partition function.

Let’s say that an ideal gas has N particles in volume V . Then, the energy is given by
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N∑
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p2i (1)

where pi is the momentum of ith particle. Of course, we have

p2i = p2ix + p2iy + p2iz (2)
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(3)

We can now calculate the partition function. It is given by

Z =
1

h3N

∫
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Problem 3. Show that

U =
3

2
kT (7)

We immediately see that the heat capacity at constant volume is given by

CV =

(
∂U

∂T

)
V

=
3

2
Nk (8)

which agrees with our earlier result in “Specific heats of gases.”

Problem 4. Show that

P =
NkT

V
(9)

which is exactly Boyle-Charles law.

Problem 5. Show that the “naive” wrong entropy is given by

Snaive(N,V, T ) = Nk lnV +
3

2
Nk

[
ln

(
2πmkT

h2

)
+ 1

]
(10)
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Problem 6. Calculate the change for entropy (10) from the state V = Vi, T = Ti to the

state V = Vf , T = Tf , and confirm that it agrees with our earlier result in “Entropy as a

state function.”

So, what is the problem? It doesn’t seem to have any problems so far. But, suppose you

prepare an identical set of gas with the same kind of particle, the same temperature, and

the same number of particles. Then, the entropy of this identical set should also be given

by (10). Thus, the total entropy should be S + S = 2S. However, notice that the combined

set now has 2N particles, the volume of 2V , and the temperature of T . Thus, if we plug in

these values to (10) we must get 2S but we don’t!

We can understand this point better by Gibbs paradox proposed by the American physi-

cist, Josiah Gibbs. Suppose you have two compartments in a container separated by a door.

The left compartment has volume V1 and the right V2. On the left compartment, we have

N1 particles called “A” with temperature T . On the right, we have N2 particles called “B.”

If you remove the door, the temperature will remain the same, as they both have the same

temperature but the entropy will increase, because particles A and particles B are being

mixed. The particles A will be spread over a bigger volume, and the particles B as well. The

total entropy increase is given by the sum of the entropy increase of the particles A and the

entropy increase of the particles B as follows:

∆Snaive = k

(
N1 ln

V1 + V2

V1
+N2 ln

V1 + V2

V2

)
(11)

So far so good. Suppose now the same situation, but, instead of two different kinds of

particles, we now have the same kind of particles at both compartments, and the number

density at both comparments were same, i.e., N1/V1 = N2/V2. Then, removing the door

will change nothing. The new number density is (N1 +N2)/(V1 + V2) = N1/V1 = N2/V2 as

before. Thus, the total entropy change ∆S must be zero. However, if we follow the above

logic, we still get (11), which is not zero!

The resolution of Gibbs paradox lies in the indistinguishability of identical particles.

Notice that we didn’t take this into account when calculating the density of states in (3).

Let me clarify. For N = 3, the following N ! configurations are all same configurations:(
p⃗1 = a⃗, p⃗2 = b⃗, p⃗3 = c⃗

)
,

(
p⃗1 = a⃗, p⃗2 = c⃗, p⃗3 = b⃗

)
(12)(

p⃗1 = b⃗, p⃗2 = a⃗, p⃗3 = c⃗
)
,

(
p⃗1 = b⃗, p⃗2 = c⃗, p⃗3 = a⃗

)
(13)(

p⃗1 = c⃗, p⃗2 = a⃗, p⃗3 = b⃗
)
,

(
p⃗1 = c⃗, p⃗2 = b⃗, p⃗3 = a⃗

)
(14)

Thus, we see that (3) is redundunt by N ! factor. Thus, the correct density of state is (3)

divided by N !. Thus, the correct partition function is given by (6) divided by N !, namely,

Z =
V N

h3NN !

(
2πm

β

)3N/2

(15)

Then, we can easily check

S(N,V, T ) = Snaive(N,V, T )− lnN ! (16)
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If you remember S = k lnW , we see that the number of statesW is reduced by N ! times. This

is expected, as we overcounted N ! times earlier by not considering the indistinguishability of

identical particles. Given this, let’s check that ∆S = 0. As the first step, notice that (11)

can be re-expressed as

∆Snaive = k

(
N1 ln

N1 +N2

N1
+N2 ln

N1 +N2

N2

)
= k ((N1 +N2) ln(N1 +N2)−N1 lnN1 −N2 lnN2) (17)

Problem 7. Using Stirling’s approximation lnN ! = N lnN −N , show that ∆S = 0.

Problem 8. Using Stirling’s approximation, show tha the correct entropy is given by

S = Nk

[
ln

(
V

N

(
2πmkT

h̄2

)3/2

+
5

2

)]
(18)

Problem 9. Repeat Problems 3. 4. and 6. for the corrected partition function, and

check that the answers do not change. Check also

S(γN, γV, T ) = γS(N,V, T ) (19)

Summary

� When calculating the entropy, we get a wrong value if we do not consider the indistin-

guishability of identical particle.

� Only when we consider the insditinguishability do we get the following desired result:

S(γN, γV, T ) = γS(N,V, T )
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