
The Gibbs free energy revisited

In the last article, we defined

−µi

T
≡ ∂S

∂Ni
(1)

where we now introduce the index i to denote the different kinds of particles.

Recall, when the number of particles didn’t change, we had

dS =
dU

T
+
P

T
dV (2)

Now, considering (1), this relation is modified to

dS =
dU

T
+
P

T
dV −

∑
i

µi

T
dNi (3)

when the number of particles can change. If we re-express the above relation, we have

dU = TdS − PdV +
∑
i

µidNi (4)

Thus, we obtain

µi =

(
∂U

∂Ni

)
S,V

(5)

Let’s now consider U(S, V,Ni). We have

dU =
∂U

∂S
dS +

∂U

∂V
dV +

∑
i

∂U

∂N
dNi (6)

Given this, notice that U, S, V,N are variables that are proportional to the quantity in con-

trast to variables like P, T . Therefore, if the quantities of S, V , and N becomes γS, γV , and

γN , then U must become γU . If we let γ = 1 + α for an infinitesimal α, (6) becomes

αU =
∂U

∂S
αS +

∂U

∂V
αV +

∑
i

∂U

∂N
αNi (7)

which implies

U =
∂U

∂S
S +

∂U

∂V
V +

∑
i

∂U

∂N
Ni (8)

By plugging in the following relation(
∂U

∂S

)
V,N

= T,

(
∂U

∂V

)
S,N

= −P, µi =

(
∂U

∂Ni

)
S,V

(9)

which we can see from (4), (8) becomes

U = TS − PV +
∑
i

µiNi (10)
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which implies

U − TS + PV =
∑
i

µiNi (11)

Thus, we conclude

G =
∑
i

µiNi (12)

In other words, the chemical potential is the Gibbs free energy per a particle.

In our earlier article on the definition of temperature, we considered two systems that are

free to exchange energy each other. There, we saw that the maximization of entropy led to

the equality of temperature of the two systems, namely T1 = T2. We derived this condition

from the fact that the total energy was conserved, i.e., the energy lost by the first system was

equal to the energy gained by the second system. In another article of ours, we have seen

that the condition that the total number of certain particle is conserved led to the concept of

chemical potential of that particle. Thus, if we have two systems that can exchange particles,

it is very easy to see that the chemical potential of the first system will be equal to the one

of the second system, namely µ1 = µ2, when the equilibrium is reached. The calculation is

very similar to the case of T1 = T2.

Then, what happens when the number of each kind of particles is not conserved? This is

the case when chemical reactions are taking place. For example, for the following reaction

A+B ↔ C +D (13)

the number of each particle A, B, C, D is not conserved separately. Nevertheless, there are

certain relations between these numbers. These relations will give a certain condition on the

chemial potential at the equilibrium, i.e., when the reaction rate for A+ B → C +D is the

same as the one for A + B ← C + D. (Recall that, in our earlier article on temperature,

the situation is such that the energy transferred from the first system to the second system

is equal to the energy transferred from the second system to the first system, when the

equilibrium is reached, i.e., the net energy transfer is zero. We have an analogus situation

now.)

So, let’s find this relation. Recall that at constant temperature and pressure, we have

dG = 0. This implies

µA∆NA + µB∆NB + µC∆NC + µD∆ND = 0 (14)

where ∆NA denotes the change of the number of particle A, and so on. Given this, observe

that (13) implies

∆NA = ∆NB = −∆NC = −∆ND (15)

Plugging this relation to (14), we see that

µA + µB = µC + µD (16)

Thus, we see that the sum of chemical energy is conserved when the chemical reaction is in

equilibrium.
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Summary

• The chemical potential is the Gibbs free energy per particle, i.e.,

G =
∑
i

µiNi

• In chemical equilibrium, the chemical potential is conserved. For example, if we have

the following chemical reaction

A+B ↔ C +D

we have

µA + µB = µC + µD

3


