
The Hamiltonian formulation of classical mechanics

Recall the Euler-Lagrange equation in our previous article. We had:

∂L

∂qi
− d

dt
(
∂L

∂q̇i
) = 0 (1)

If we define the “conjugate momentum” of qi as follows:

pi ≡
∂L

∂q̇i
(2)

we can write the Euler-Lagrange equation as:

ṗi =
∂L

∂qi
(3)

This allows us to express the small variation of Lagrangian as follows:

δL =
∑
i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i)

=
∑
i

ṗiδq
i + piδq̇i (4)

Stepping further, we get:

δL =
∑
i

ṗiδq
i + δ(piq̇i) − q̇iδpi

δ(
∑
i

piq̇i − L) =
∑
i

−ṗiδqi + q̇iδpi (5)

We now define
H ≡

∑
i

piq̇
i − L (6)

and call it “Hamiltonian.” It turns out that this coincides with energy, as
we you will see in our later examples in this article. Furthermore, by solving
Problem 1, you will be convinced that Hamiltonian is energy. At this point,
I want to caution the readers that H must be re-expressed solely in terms
of pis and qis by eliminating q̇i. In other words, q̇i must be absent in H.
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From (5) and (6) , we have:

δH =
∑
i

−ṗiδqi + q̇iδpi (7)

which implies
∂H

∂qi
= −ṗi,

∂H

∂pi
= q̇i (8)

These are called Hamilton’s equations.
Let me give you an example. In 3-dimensional Cartesian coordinate, we

have:

L =
1

2
m(ẋ2 + ẏ2 + ż2) − V (x, y, z) (9)

Here, we will set:
q1 = x, q2 = y, q3 = z (10)

Then, from (2), we have:

p1 = mq̇1, p2 = mq̇2, p3 = mq̇3 (11)

In other words:
pi = mq̇i (12)

Now, we can re-express Lagrangian in terms of ps and qs, instead of q̇s
and qs as follows:

L =
∑
i

(pi)
2

2m
− V (qi) (13)

Plugging this into (6), we get:

H =
∑
i

pi(
pi
m

) − L

=
∑
i

(pi)
2

2m
+ V (qi) (14)

Then, Hamilton’s equations become:

∂H

∂pi
=
pi
m

= q̇i (15)

pi = mq̇i (16)

∂H

∂qi
=
∂V

∂qi
= −ṗi = −mq̈i (17)

mq̈i = −∂V
∂qi

(18)
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So, we recover Newton’s equations. Notice also that (14) is the usual energy,
i.e., the sum of kinetic energy and the potential energy. Of course, Hamil-
ton’s equations are always valid for general cases as well, not just when the
position and momentum of particle are expressed by the Cartesian coordi-
nate.

Problem 1. Energy is conserved. In other words, if the Hamiltonian
is energy, it also must be conserved. In this problem, you will show that
Hamiltonian is conserved. Assume that Hamiltonian H only depends on pi
and qi. In other words, H = H(pi, q

i). Then, by using chain rule and (8),
show that

dH

dt
= 0 (19)

Problem 2. In our earlier article “Central force problem solution in
terms of Lagrangian mechanics,” we obtained the equation of motion for
the case in which the Lagrangian was given as follows:

L =
1

2
m(ṙ2 + r2θ̇2) − V (r) (20)

First, obtain the Hamiltonian in terms of r, θ, ṙ and θ̇, sin such a case and
check that it coincides with the usual energy. (i.e. the sum of the kinetic en-
ergy and the potential energy) Then, re-express the Hamiltonian in terms of
r, θ, pr and pθ, and obtain the equation of motion using Hamilton’s equations
and check that they coincide with the earlier ones obtained using Lagrangian
formulation of classical mechanics.

Let me conclude this article with a comment. The process in which
we obtained Hamiltonian from Lagrangian may seem like a magic but it is
just an example of what is called “Legendre transformation.” The Legendre
transformation of function f(x, y) is given by

g(p, y) = f − px (21)

where p = ∂f
∂x . In our case we had x = q̇, y = q, f = L, and g = −H. Besides

the Hamiltonian mechanics, Legendre transformation has applications in
thermodynamics and quantum field theory.

Summary

• The conjugate momentum of qi is given by

pi ≡
∂L

∂q̇i

• The Hamiltonian is then given by

H =
∑
i

piq̇
i − L
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• Hamilton’s equations are given by

∂H

∂qi
= −ṗi,

∂H

∂pi
= q̇i

• The Hamiltonian corresponds to the energy (i.e. the sum of kinetic
energy and potential energy).
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