
Kinetic energy, potential energy and angular momentum

in polar coordinate and Kepler’s second law

In later articles, we will use the polar coordinate to express the equation of motion of

planets. There, everything will be derived by placing the origin of the polar coordinate on

Sun. This article serves as the first step toward this goal.

Recall that the kinetic energy is given as follows in Cartesian coordinate:

1

2
mv2 =

1

2
m(v2x + v2y) (1)

where vx = dx/dt and vy = dy/dt. What would be the analogous equation in polar coordi-

nate? We have:

x = r cos θ, y = r sin θ (2)

Differentiating using Leibniz rule, we get:

dx

dt
=
dr

dt
cos θ − r dθ

dt
sin θ (3)

dy

dt
=
dr

dt
sin θ + r

dθ

dt
cos θ (4)

Therefore, we obtain:

v2 = v2x + v2y =

(
dr

dt

)2

+ r2
(
dθ

dt

)2

(5)

If we use the following notation:

ḟ =
df

dt
(6)

(5) can be re-expressed as:

v2 = ṙ2 + r2θ̇2 = ṙ2 + (rθ̇)2 (7)

We have an obvious interpretation for this formula. ṙ is the velocity in the radial direc-

tion and rθ̇ is the velocity in the angular direction. (Remember that in our earlier article

“centripetal force” we obtained that the velocity in angular direction was given by rω. In

this case, θ̇ is simply ω.) The total velocity squared is the sum of the square of each of them,

as they are orthogonal to each other. If you are not clear what I mean, see Fig. 1 in which we

call the unit vector (i.e. a vector with magnitude 1) in radial direction r̂ and the unit vector

in angular direction θ̂. In any case, what we said so far in the beginning of this paragraph

can be re-expressed mathematically as:

~v =
d~s

dt
=
dx

dt
î+

dy

dt
ĵ = ẋ î+ ẏ ĵ =

dr

dt
r̂ + r

dθ

dt
θ̂ = ṙ r̂ + rθ̇ θ̂ (8)
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Figure 1: r̂ and θ̂ in polar coordinate

Figure 2: r̂ and θ̂ in terms of î and ĵ

or, in other words, by canceling out dt in the denominator:

d~s = dx î+ dy ĵ = dr r̂ + rdθ θ̂ (9)

r̂ and θ̂ can be actually obtained by plugging (3) and (4) to (8). We get (Problem 1.):

r̂ = cos θ î+ sin θ ĵ (10)

θ̂ = − sin θ î+ cos θ ĵ (11)

This can be actually obtained geometrically as well. See Fig. 2. In any case, one can indeed

check that they are orthogonal and unit vectors. In other words, using (10) and (11), we

obtain

r̂ · r̂ = θ̂ · θ̂ = 1, r̂ · θ̂ = 0 (12)

This allows us to re-derive (5) by using (8) as follows:

v2 = ~v · ~v =

(
dr

dt

)2

r̂ · r̂ + 2r
dr

dt

dθ

dt
r̂ · θ̂ + r2

(
dθ

dt

)2

θ̂ · θ̂ (13)

=

(
dr

dt

)2

+ r2
(
dθ

dt

)2

(14)

In conclusion, the kinetic energy is given as follows:

1

2
mv2 =

1

2
m(ṙ2 + r2θ̇2) (15)

Now to the potential energy. In the generic case, elementary force such as gravitation only

depends on the distance. In our case, the gravitational force only depends on the distance

to the Sun and is in radial direction. (Precisely speaking, negative r̂ direction i.e. toward

center.) So, we can express the gravitational force ~F as follows:

~F = F (r)r̂ (16)
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Therefore, using (9), we have

U(r) = −
∫

~F · ~ds (17)

= −
∫
F (r)r̂ · (dr r̂ + rdθ θ̂) (18)

= −
∫
F (r)dr (19)

In the case of Newtonian gravitation, we have: F (r) = −GMm/r2 where M is the Sun’s mass

and the negative sign is used to denote the fact that the force is directed toward negative

r̂ direction (i.e. toward center). By plugging this to the above formula, we can see the

following:

U(r) = −GMm

r
+ constant (20)

where the constant term is due to integration constant. However, it is customary to set this

constant zero. Therefore, we have U(r) = −GMm/r.

Problem 2. Using the chain-rule, show

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ (21)

Problem 3. Let’s say that you launch a rocket from the ground which is at distance

R from the center of the Earth with speed v0. Let’s say that the mass of rocket is m and

the mass of the Earth is M . We will further assume that in the universe there are only this

rocket and the Earth, ignoring the gravitation of the Sun and other planets. Given this, what

is the total energy (i.e. the sum of kinetic energy and the potential energy) of this rocket

upon launching?

Problem 4. Assume that the rocket reaches a point infinitely far away from the Earth.

What is its potential energy at this point? (Hint:1) How about its kinetic energy? (Hint:2)

Problem 5. Using the result of Problem 4 and the fact that the kinetic energy can never

be less than zero, obtain the minimum speed upon launching which the rocket needed to

reach a point infinitely far away from the Earth. This is called “escape velocity.” In other

words, if you shoot a rocket with a speed less than the escape velocity, it will never reach

region far enough to be truly free from the gravity of the Earth; at a certain point, it will

move toward the Earth.

As an aside, black hole is a region where the escape velocity is greater than the speed of

light. According to Einstein’s theory of relativity nothing can move faster than speed of light.

Therefore, nothing can escape from a black hole. The simplest black hole has a shape of sphere

with radius called “Schwarzschild radius” which depends on G, (the Newton’s constant) M ,

(the mass of the black hole) and c (the speed of light.) The Schwarzschild radius can be

obtained in a wrong method by using non-relativistic, Newtonian formulas by setting escape

1Use U = −GMm/r
2The sum of the kinetic energy and the potential energy is equal to the one obtained in Problem 3, because

of the conservation of the energy.
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velocity equal to c. (Problem 6. Obtain Schwarzschild radius.) Surprisingly, this yields the

correct answer which one can obtain from the exact, fully relativistic treatment which we

will show you in our later article “A Relatively Short Introduction to General Relativity.”.

When I was young, I read about Schwarzschild radius from a cartoon book on relativity and

found out that this was exactly equal to the value obtained non-relativistically. Therefore, I

thought that it couldn’t be the right value and the book had an error. I told so to my physics

tutor but she didn’t know enough general relativity to answer my question.

Problem 7. First, prove ˙̂r = θ̇ θ̂ and
˙̂
θ = −θ̇ r̂ using (10) and (11). Using this result,

show that the acceleration is given as

~a =
d2~s

dt2
= (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂ (22)

where r̈ = d2r/dt2 and θ̈ = d2θ/dt2. (Hint3). Notice that the force in polar coordinate

system is given as follows.

~F = m~a = (mr̈ −mrθ̇2)r̂ + (2mṙθ̇ +mrθ̈)θ̂ (23)

If the force is in radial direction, i.e., ~F = Fr r̂, the above equation can be re-expressed as

mr̈ = Fr +mrθ̇2 (24)

2mṙθ̇ +mrθ̈ = 0 (25)

Now, let’s look at the first equation. In addition to the radial force Fr, the object sees as if

it receives extra force mrθ̇2 in positive radial direction (i.e., outward force.) This is exactly

centrifugal force.

We can also interpret the second equation. Let’s multiply by r on the both-hand sides.

Then, it is easy to see that the following equation must be satisfied if the second equation is

satisfied.

2mrṙθ̇ +mr2θ̈ = 0 (26)

Notice now that the above equation can be re-expressed as

d(mr2θ̇)

dt
= 0 (27)

Therefore, we see that mr2θ̇ is conserved (i.e., constant) if the force is radial. Now, remember

that angular momentum is given by L = Iω where the moment of inertia is I =
∑

imir
2
i .

In our case, this is I = mr2. As ω is θ̇, we see that the conserved quantity mr2θ̇ is precisely

angular momentum! We conclude that angular momentum is conserved in central force

(i.e. force that are directed in radial direction.) In our later article “Re-visiting angular

momentum conservation in central force” we will derive again that the quantity mr2θ̇ is

indeed angular momentum and is conserved from a more mathematical definition of angular

momentum.

3Differentiate ~v = ṙ r̂ + rθ̇ θ̂ with respect to time by using Leibniz rule.
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Figure 3: Kepler’s second law

Now, we can prove Kepler’s second law algebraically. Kepler’s second law asserts that the

line connecting the Sun and the planet swipes equal amount of area during equal amount of

time. Now, let’s express this area using r and θ̇. For a very small angle dθ, the area swiped

by the line can be shown equal to 1
2r ·rdθ. See Fig.3. The area concerned is the small triangle

whose base is r and whose height is rdθ. Therefore, per unit time, the line swipes the area

by following:
1
2r

2dθ

dt
=

1

2
r2θ̇ (28)

As mr2θ̇ is a constant, we conclude that the above formula is constant.

Problem 8. We know that U(r) = −GMm/r must be valid even when we consider an

object moving in 3 dimensional space instead of a plane in 2d as considered in this article.

This is so, because (19) is still valid where F (r) = −GMm/r2 as before. Nevertheless, as

an exercise let’s check that this potential energy gives out the correct gravitational force

in 3d Cartesian coordinate. To this end, remember that the distance to the origin is given

by r =
√
x2 + y2 + z2 from Pythagorean theorem. Note also that the vector pointing from

origin to the point where object is located is given by ~r = x î + y ĵ + z k̂. Then, the unit

vector pointing in positive radial direction is given by

r̂ =
~r

r
(29)

(Check that this is indeed unit vector!) Given this, check U(r) = −GMm/r gives rise to the

force F (r) = (−GMm/r2)r̂ as expected. (Hint4)

Summary

• The velocity vector can be expressed in the 2-d Cartesian coordinate and the polar

coordinate as

~v = ẋ î+ ẏ ĵ = ṙ r̂ + rθ̇ θ̂

• r̂ · r̂ = θ̂ · θ̂ = 1, r̂ · θ̂ = 0

4Use ∇U =
∂U

∂r
∇r (i.e. the chain rule) and the result of Problem 2 of “Kinetic energy and Potential

energy in three dimensions, Line integrals and Gradient”
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• Kepler’s second law is the consequence of angular momentum conservation.

• The gravitational potential is given by

U(r) = −GMm

r

-

• ∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂

• r̂ =
~r

r
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