
Kaluza-Klein theory

A very well-known scenario for extra dimension is Kaluza-Klein theory. In 1919, to

Einstein, Kaluza suggested a metric for his five-dimensional theory, and showed that this

metric leads to the unification of gravity and Maxwell’s electromagnetic field. His work was

published in 1921. Let us review how this works.

Imagine that we are in five dimensions, with metric components g
(5)
MN , M,N = 0, 1, 2, 3, 4

and that the spacetime is actually of topology R4 × S1, and so has one compact direction

(S1 denotes a circle). So we will have the usual four dimensional coordinates on R4, xµ

(µ, ν = 0, 1, 2, 3) and a periodic coordinate:

x4 ∼ x4 + 2πR (1)

where 2πR is the size of extra dimension. In other words, x4 and x4 + 2πR denote the same

point.

Now, under the five-dimensional coordinate transformation x′M = xM + εM (x), the five-

dimensional metric transforms as follows:

g
(5)′

MN = g
(5)
MN − ∂M εN − ∂N εM (2)

Given this, let us assume that the metric doesn’t depend on the periodic coordinate, x4.

Then, we immediately see the followings:

εν = εν(xµ) (3)

ε4 = ε4(xµ) (4)

which means,

xµ
′

= ψµ(x0, x1, x2, x3) (5)

x4
′

= x4 + ε4(x0, x1, x2, x3) (6)

They have obvious physical interpretations. The first one is the usual four-dimensional

diffeomorphism invariance. The second one is an xµ-dependant isometry(rotation) of the

circle; one has a complete freedom of choosing which point on the circle is x4 = 0. In other

words, this choice does not matter at all.

Then, from (2), g
(5)
44 is invariant, as ε4 does not depend on x4. On the other hand, from

(2) and (6), we have:
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g
(5)′

µ4 = g
(5)
µ4 − ∂µε4 (7)

However, from the four dimensional point of view, g
(5)
µ4 is a vector, having one 4-dimensional

index (i.e., µ). This vector is proportional to what we will call Aµ. Thus, the above equation

is simply a U(1) gauge transformation for the electromagnetic potential: A′µ = Aµ − ∂µΛ if

we call the proportionality constant, k, and make the following identification:

g
(5)
µ4 = kAµ, ε4 = kΛ (8)

So the U(1) of electromagnetism can be thought of as resulting from compactifying gravity,

the gauge field being an internal component (i.e., µ4) of metric. We also see that, in this

picture, U(1) gauge freedom comes from (6), our freedom to choose which point on the circle

is x4 = 0.

Problem 1. Check that, under (6), we have

dx4
′
+ kA′µdx

µ = dx4 + kAµdx
µ (9)

In other words, we see that dx4 + kAµdx
µ is gauge invariant.

Assuming g
(5)
44 = 1 from its invariance under gauge transformation and by rescaling, these

considerations lead to the following metric:

ds2 = g
(5)
MNdx

MdxN = g(4)µν dx
µdxν + (dx4 + kAµdx

µ)2 (10)

as only the gauge invariant form must appear in the metric. From this expression, we have

g(5)µν = g(4)µν + k2AµAν , g
(5)
µ4 = g

(5)
4µ = kAµ, g

(5)
44 = 1 (11)

Now, one can easily check that the inverse metric is given as follows:

gµν(5) = gµν(4), gµ4(5) = g4µ(5) = −kAµ, g44(5) = 1 + k2AαA
α (12)

(Problem 2. Check the above equation by multiplying it by (11) to obtain the identity

matrix.)

Given this, the five-dimensional Ricci scalar can be re-expressed as the four-dimensional

one and the electromagnetic field tensor as follows:

R(5) = R(4) − 1

4
k2FµνF

µν (13)

where Fµν = ∂µAν − ∂νAµ as usual. One can also check that the determinant of g
(5)
MN is

same as the one of g
(4)
µν . We can roughly see this as follows, even though this is not rigorous.

det

(
1 kAµ

kAν g
(4)
µν + k2AµAν

)
= 1×

(
g(4)µν + k2AµAν

)
− kAµ × kAν = g(4)µν (14)
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Now, if we denote GN(4) as 4-dimensional Newton’s constant and GN(5) as its 5-dimensional

counterpart, the Einstein-Hilbert action in 5d becomes:

S =
1

16πGN(5)

∫
d5x(−g(5))1/2R(5) (15)

=
2πR

16πGN(5)

∫
d4x(−g(4))1/2(R(4) − 1

4
k2FµνF

µν) (16)

Therefore, up to some normalization factors, Einstein-Hilbert action in five-dimensional

Kaluza-Klein theory reproduces Einstein-Hilbert action in four-dimensional theory and Maxwell-

Lagrangian, which means the unification of gravity and electromagnetism. Now, let’s deter-

mine the normalization factors. The above action must be equal to

S =

∫
d4x(−g(4))1/2(

1

16πGN(4)
R(4) − 1

4
FµνF

µν) (17)

Therefore, we conclude
2πR

GN(5)
=

1

GN(4)
, k =

√
16πGN(4) (18)

where 2πR is the size of extra-dimension, as stated before.

Now comes Klein’s work. After quantum mechanics was formulated, Klein showed in

1926 that one could determine the size of extra-dimension in Kaluza’s scenario from quantum

mechanics. This is something that we will show in the rest of the article.

To this end, we need to first find an explicit geodesic equation. As was the case in our

earlier article “An Introduction to General Relativity,” it turns out that extremizing the

square of the line element instead of line element is more convenient. After all, the former is

equivalent to the latter, when we parametrize the path by the proper time. If we denote the

proper time by τ , and g4µν by gµν , what we want to extremize is the following:

L =
1

2
m

((
dx4

dτ
+ kAµ

dxµ

dτ

)2

+ gµν
dxµ

dτ

dxν

dτ

)
(19)

where m is the mass of the particle concerned and the overall factor 1
2m is for future conve-

nience. Now, let’s obtain the “momentum” and its equation of motion for this “Lagrangian.”

We have:

p4 =
∂L

∂(dx4/dτ)
= m

(
dx4

dτ
+ kAµ

dxµ

dτ

)
(20)

dp4
dτ

=
∂L

∂x4
= 0 (21)

pµ =
∂L

∂(dxµ/dτ)
= mgµν

dxν

dτ
+ kp4Aµ (22)

dpµ
dτ

=
∂L

∂xµ
=

1

2
m∂µgαβ

dxα

dτ

dxβ

dτ
+ kp4

∂Aν
∂xµ

dxν

dτ
(23)

(21) shows that p4 is a conserved quantity. Also, if you remember the following formula from

“Electrodynamics in the Lagrangian and the Hamiltonian formulations,”

px = mẍ+ qAx, px = mÿ + qAy, pz = mz̈ + qAz (24)
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(22) turns out to be the momentum, provided

p4 =
q

k
(25)

Therefore, we indeed see that the charge conservation implies that p4 is a conserved quantity.

One can also check that this choice of p4 yields the correct equation of motion in the presence

of electromagnetic field. Plugging (22) to (23) yields:

dpµ
dτ

= m
d

dτ

(
gµν

dxν

dτ

)
+ kp4

∂Aµ
∂xν

dxν

dτ
(26)

Equating this with the right-hand side of (23) yields the following (Problem 3. Hint1):

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= kp4Fνµ

dxν

dτ
(27)

With the identification of q = kp4, this equation exactly becomes the equation of motion

in the presence of electromagnetic field Fνµ. (Problem 4. Check that the above equation

reduces to the following in the flat space:

m~̈r = q ~E + q~̇r × ~B (28)

where ~r = (x, y, z).)

Given all these, let’s obtain the size of the extra dimension. The wave function of a

particle with momentum ~p is given as follows

ψ(x) = Aei~p·~x/~ = ei(p1x
1+p2x

2+p3x
3)/~eip4x

4/~ (29)

Focusing on the last factor of the above equation and using (1), we must have:

eip4x
4/~ = eip4(x

4+2πR)/~ (30)

which implies:

p4(2πR)/~ = 2πN, → p4 = N
h

2πR
(31)

for an integer N . Using q = kp4, we have:

q = N
kh

2πR
(32)

So, we derived the fact that an electric charge must be the integer multiples of the funda-

mental charge h/(2πRk). According to quantum chromodynamics, the charge of quark is

±e/3 or ±2e/3 where −e is the charge of the electron. Therefore, the fundamental charge

seems to be e/3. Therefore, we obtain:

2πR =
3h
√

16πGN(4)

e
≈ 2.5× 10−32meter (33)

1See Section 12 of “An Introduction to General Relativity.”
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In terms of Planck length lp and the fine structure constant α defined as follows,

lp =

√
~G
c3
, α =

e2

~c
≈ 1

137.03 · · ·
(34)

we have:

2πR =
3(4π)3/2√

α
lp (35)

In my paper with Brian Kong “Black hole entropy predictions without Immirzi parameter

and Hawking radiation of single-partition black hole,” I suggested a way to calculate the size

of the extra dimension. Since it can be expressed in terms of fine structure constant, if

somebody succeeds in obtaining it using my suggestion, we will find a way to calculate the

fine structure constant.

Summary

• Let’s say that the spacetime has a topology of R4×S1, and the metric doesn’t depend

on S1, the extra dimension part. Then, the theory of general relativity in such a case

becomes the theory of general relativity in 4d and Maxwell theory in 4d.

• In particular, the following symmetry

x4
′

= x4 + ε4(x0, x1, x2, x3)

gives the gauge symmetry, and the conservation of momentum along the extra dimen-

sion gives the conservation of electric charge.
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