Lagrange multipliers

Suppose you want to find the local extremum of a function $f\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)$. Then, we have to find the solution to the following equations:

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial x_{2}}=\cdots=\frac{\partial f}{\partial x_{n}}=0 \tag{1}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\nabla f=0 \tag{2}
\end{equation*}
$$

Now, suppose the coordinates $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ satisfy i constraints g s as follows:

$$
\begin{equation*}
g_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=g_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\cdots=g_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \tag{3}
\end{equation*}
$$

Then, let me ask you another question. What is the local extremum of f that satisfy these i constraints?

The trick is to introduce $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{i}$ called "Lagrange multipliers," and find the local extremum of the following quantity F instead of the original f :

$$
\begin{equation*}
F=f+\lambda_{1} g_{1}+\lambda_{2} g_{2}+\cdots+\lambda_{i} g_{i} \tag{4}
\end{equation*}
$$

Let's confirm that this trick indeed works. We have:

$$
\begin{equation*}
\nabla F=0, \quad \frac{\partial F}{\partial \lambda_{1}}=\frac{\partial F}{\partial \lambda_{2}}=\cdots=\frac{\partial F}{\partial \lambda_{i}}=0 \tag{5}
\end{equation*}
$$

The second condition implies (3). Therefore, the coordinates satisfy the constraints. Moreover, plugging (3) to (4), we see $F=f$, which means that extremizing F is equivalent to extremizing f with the constraints g. Now, we are left with the first equation of (5). Plugging (4) into it, we have:

$$
\begin{equation*}
\nabla f+\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}+\cdots+\lambda_{i} \nabla g_{i}=0 \tag{6}
\end{equation*}
$$

To find the extremum of f we have to solve this equation along with the constraints $g=0$. Here, λ s are extra unknowns that should be found upon solving the above equation.

Problem 1. What is the maximum of $x+4 y$ on the ellipse $x^{2}+9 y^{2}=1$? (Hint 1)

Summary

- If you want to find the local extremum of f, with the condition $g_{1}=g_{2}=\cdots=g_{i}=0$, you can do so by extremizing

$$
f+\lambda_{1} g_{1}+\lambda_{2} g_{2} \cdots+\lambda_{i} g_{i}
$$

where λ s here are called Lagrange multipliers.

$$
{ }^{1} f=x+4 y, \quad g=x^{2}+9 y^{2}-1
$$

