
The Lagrangian formulation of classical mechanics

In the late 17th century, Newton invented Newtonian mechanics, which describes

nature very well. About 100 years later, Lagrange invented the Lagrangian formula-

tion of classical mechanics. Lagrange’s formulation is totally equivalent to Newtonian

mechanics, but is formalized very differently. If you want to solve a difficult mechanics

problem, you may do so using either Newtonian mechanics or Lagrangian mechanics.

Even though the actual calculations may be very different, the solutions are guaranteed

to be the same. In many cases, the Lagrangian method is simpler than the Newtonian

one, so there may be a computational advantage in learning the Lagrangian formulation

of classical mechanics. More importantly, however, the Lagrangian formulation is the

natural framework for quantum field theory and general relativity. These cannot be

understood without knowledge of the Lagrangian formulation. In light of this impor-

tance, I would like to introduce the Lagrangian formulation of classical mechanics in

this article.

In our earlier article “Fermat’s principle and the consistency of physics,” we explained

Fermat’s principle: light always travels the path that takes the shortest time. Can we

apply Fermat’s principle to other objects, such as a stone or a ball? Apparently not.

If you throw a ball, the ball doesn’t follow the path that takes the shortest time; it

eventually falls down rather than traveling along a straight line. However, there is still

a way to generalize Fermat’s principle so that we can apply it to a ball or a stone.

Before doing so, let me first introduce the terms “extremum” and “extremizing,”

which are crucial to understanding this article. The first is a collective term for “maxi-

mum” and “minimum.” The latter is a collective term for “maximizing” and “minimiz-

ing.” In other words, a value is an extremum if it is a maximum or a minimum, and is

extremized if it is maximized or minimized. An important property of the extrema of a

function is that the first derivative takes the value zero. Using this terminology, we can

re-state Fermat’s principle by saying that light travels along the path that extremizes

the time it takes.

Now, let’s move on to our case. 19th Irish physicist, Hamilton noticed that a particle,

such as a ball as we mentioned, moving along the path given by the Newtonian equations

of motion extremizes, instead of the time it takes, the following quantity, called “action.”

.
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S =

∫ b

a
Ldt (1)

where t is time, and L is the Lagrangian which is given by

L = T − V (2)

where T is kinetic energy, and V potential energy. Notice that Lagrangian L is different

from the definition of energy which is the sum of kinetic energy and potential energy.

The Lagrangian is the difference between kinetic energy and potential energy, not their

sum.

Anyhow, there is an important precondition which a particle must satisfy when you

find the path that extremizes (1). If we denote coordinates as a function of time by

q(t)s, then q1(a), q2(a), . . . qn(a), q1(b), q2(b), . . . qn(b) must be fixed. In other words,

the initial time a, the initial position q(a)s, the final time b and the final position q(b)s

are fixed. See Fig. 1 for examples of paths that satisfy these boundary conditions.

So, among all possible paths that we can draw in Fig. 1 (i.e., the ones that satisfy

the boundary condition), the acutal path (i.e., the one that satisfies the Newtonian

equations of motion) is the one that extremizes the action (1). That’s what Hamilton

proved.

Now, let me make two points about (2). If L were just a constant, then (1) would have

been just S = L
∫
dt, as we can always pull out a constant factor from an integration. In

such a case extremizing S would be just extremizing L
∫
dt or equivalently,

∫
dt, which

is the time that takes. This is the case of light, namely, Fermat’s principle.

Second point. Notice also that L, as denoted in (2), is a function of q(t)s and q̇(t)s

since T is a function of q̇(t) (kinetic energy is a function of velocity), and V is a function

of q(t) (potential energy depends on position). In other words, we can write

L = L(q1(t), q2(t), · · · , qn(t), q̇1(t), q̇2(t), · · · , q̇n(t)) (3)
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Given this, let’s find the path that extremizes the action (1) and check whether is

agrees with Newtonian equation of motion.

However, finding such a path may seem daunting. In the case of finding simple

extrema of ordinary functions, the only thing you need to do is take the derivative with

respect to all parameters that describe the function, set them equal to zero, and solve.

By contrast, here we have infinitely many such parameters. Namely, S depends on the

q(t)s with t taking on every value between a and b. Since we have infinitely many such

ts, and therefore infinitely many q(t)s, we indeed have infinitely many parameters. So,

do we need to solve infinitely many equations to find this path?

The answer is no. In the 1750s Euler and Lagrange came up with a novel idea to

solve such problems which is called “calculus of variations.” Their equation is called the

“Euler-Lagrange equation,” which we will now derive.

First, for simplicity of notation let action be expressed in the following way:

S =

∫ b

a
L
(
Qi (t) , Q̇i (t)

)
dt (4)

where i runs from 1 to n. Now, let f(t) be an arbitrary function that satisfies the

boundary condition f (a) = f (b) = 0 and parametrize Qεi (t) about a certain path qi(t)

with a parameter ε as follows:

Qεi (t) = qi (t) + εf(t) (5)

The above mentioned boundary condition guarantees that Qεi (a) and Qεi (b) are fixed.

See Fig. 2.

The corresponding action is given by the following formula:

S(ε) =

∫ b

a
L(Qεi(t), Q̇

ε
i(t))dt (6)
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Notice that if qi(t) extremizes the action, then the following equation must be satis-

fied regardless of f (t) .

dS

dε
(ε = 0) = 0 (7)

This is because any slight perturbation (i.e. εf(t) for ε very small) around qi (t) must

either increase S if S is a minimum or decrease S if S is a maximum.

Now, let’s expand the above equation:

dS

dε
=

∫ b

a

dL

dε
dt =

∫ b

a

f (t)
∂L
(
Qεi (t) , Q̇εi (t)

)
∂Qεi (t)

+ ḟ(t)
∂L
(
Qεi (t) , Q̇εi (t)

)
∂Q̇εi

 dt
=

∫ b

a

[
f (t)

∂L

∂Qεi
− f (t)

d

dt

(
∂L

∂Q̇εi

)]
dt+

[
f(t)

∂L

∂Q̇εi

]b
a

(8)

=

∫ b

a

[
∂L

∂Qεi
− d

dt

(
∂L

∂Q̇εi

)]
f(t)dt (9)

where we have used integration by parts and the fact that f (a) = f (b) = 0. Since for

any f(t), the above is satisfied when ε is zero, we conclude that the following equation

is satisfied for a path that extremizes the action:

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 (10)

This equation is called the “Euler-Lagrange equation,” and should be satisfied for all i

from 1 to n. In other words, if the system is described by n coordinates, then there are

n equations.

Now, Lagrange’s observation was that we can retrieve the Newtonian equations of

motion by plugging the following Lagrangian into the Euler-Lagrange equation:

L = T − V (11)

Here, T is kinetic energy, and V potential energy as we explained earlier.

Let’s explicitly verify this claim. For kinetic energy and potential energy we have

the following:

T =
1

2
m(ẋ2 + ẏ2 + ż2) (12)

V = V (x, y, z) (13)

If we plug this into the Euler-Lagrange equation, we get:

∂L

∂x
= −∂V

∂x
,
∂L

∂y
= −∂V

∂y
,
∂L

∂z
= −∂V

∂z
(14)
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d

dt

(
∂L

∂ẋ

)
=

d

dt

(
∂T

∂ẋ

)
=

d

dt
(mẋ) = mẍ (15)

d

dt

(
∂L

∂ẏ

)
=

d

dt

(
∂T

∂ẏ

)
=

d

dt
(mẏ) = mÿ (16)

d

dt

(
∂L

∂ż

)
=

d

dt

(
∂T

∂ż

)
=

d

dt
(mż) = mz̈ (17)

Putting everything together, we finally get

d

dt
(mẋ) = −∂V

∂x
(18)

d

dt
(mẏ) = −∂V

∂y
(19)

d

dt
(mż) = −∂V

∂z
(20)

which are Newton’s equations of motion.

We derived this using Cartesian coordinates, but this agreement with Newton’s equa-

tions of motion is preserved even if we use other coordinate systems such as polar co-

ordinates, cylindrical coordinates, spherical coordinates and so forth. The reason is

following: no matter which coordinate system you use to express the Lagrangian, the

path coming from the solutions of the Euler-Lagrange equations for this Lagrangian

is guaranteed to extremize the action. Since the actual paths that extremize the ac-

tion clearly do not depend on a particular coordinate system, we can conclude that the

Euler-Lagrange equation for a suitable Lagrangian reproduces Newton’s equations of

motion.

Finally, I want to add four comments.

First, the notation for the derivation of the Euler-Lagrange equation presented in this

article is not the notation one would find in a physics textbook, though it is arguably

more conceptually clear. Therefore, I present here the notations commonly used by

physicists. The derivation is exactly the same; only the notation is different.

0 = δS =

∫ b

a
δLdt =

∫ b

a

[
∂L

∂q
δq +

∂L

∂q̇
δq̇

]
dt (21)

=

∫ b

a

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δqdt+

[
∂L

∂q̇
δq

]b
a

(22)

=

∫ b

a

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δqdt (23)

where we have used the following conditions as before: δq (t = a) = δq (t = b) = 0

Since this equation should be satisfied for arbitrary δq, we retrieve the Euler-Lagrange

equation.

Second, a total derivative term in the Lagrangian doesn’t affect the equation of

motion. In other words, the Euler-Lagrange equations for the Lagrangian L and for the
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Lagrangian L+ dF
dt are the same. Let’s verify this by taking the first steps of derivation

of the Euler-Lagrange equation for the second case:

0 = δS =

∫ b

a
[δL+δḞ ]dt =

∫ b

a
δL dt+ [δF ]ba (24)

=

∫ b

a
δL dt+

[
∂F

∂q
δq +

∂F

∂q̇
δq̇

]b
a

(25)

=

∫ b

a
δL dt (26)

where in the last step, we used the fact that δq and δq̇ vanish when t = a or t = b. (It

goes without saying that δq̇ vanishes at these points, given that δq does.)

Looking at the above expressions, it is clear that finding the Euler-Lagrange equa-

tion for the Lagrangian L+ dF
dt is reduced to the problem of finding the Euler-Lagrange

equation for the Lagrangian L. Therefore, we can easily conclude that the total deriva-

tive term doesn’t affect the Euler-Lagrange equation, and the Euler-Lagrange equations

for both Lagrangians are the same as claimed.

Third, as most students learn the Lagrangian formulation of classical mechanics

long after they first learned the fact that the total energy of a system, such as the sum

of kinetic energy and potential energy, is always conserved, they may think that the

Lagrangian formulation of classical mechanics is less fundamental than the classical me-

chanics described by the energy conservation. Of course, as these two formulations are

equivalent, we may not be able to say which one is more fundamental. Nevertheless, the

modern viewpoint is that Lagrangian formulation is more fundamental; what physicists

do is not deriving the form of Lagrangian from the energy, but guessing possible forms

of Lagrangian that satisfy stringent criteria, then obtaining the energy that should be

conserved (called “Hamiltonian”) from the form of Lagrangian. For example, the La-

grangian formulation of general relativity was discovered in 1915 while the Hamiltonian

formulation of general relativity was discovered in 1959. In our later articles, we will

soon talk about how to obtain the form of Hamiltonian from the form of Lagrangian.

Fourth, earlier in this article, I said, “a ball doesn’t follow the path that takes the

shortest time.” But, this is a lie. A ball does follow the path that takes the shortest time.

Nevertheless, if you don’t know Einstein’s theory of relativity, it’s much less confusing

to say that “a ball doesn’t follow the path that takes the shortest time” than to say

that “a ball follows the path that takes the shortest time,” even though the former is

a lie and the latter isn’t. I will explain this point in our later article “Geodesics in the

presence of constant gravitational field.”

Problem 1. Consider the shortest path that connects the point (x1, y1) and (x2, y2).

This path can be expressed as y(x) where y(x1) = y1 and y(x2) = y2. The length element
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is given by ds =
√
dx2 + dy2 from Pythagoras theorem. Then, the quantity we want to

extremize is given by

∫ x2

x1

√
dx2 + dy2 =

∫ x2

x1

√
1 +

(
∂y

∂x

)2

dx (27)

By solving the Euler-Lagrange equation, show that the shortest path between these two

points satisfies the following equation:

∂y

∂x
= constant (28)

In other words, it’s a straight path as the slope seen in an x− y coordinate (Cartesian

coordinate) is constant. When we will explain general relativity, we will see that one

uses a similar strategy to find the shortest path between two points in a curved space;

we will solve the appropriate Euler-Lagrange equation. In the curved space case, ds =√
dx2 + dy2 is modified; if ds =

√
dx2 + dy2 is satisfied at all points, the space is

necessarily flat.

Summary

• Lagrangian is given by L = T − V where T is kinetic energy and V is potential

energy.

• The integration of Lagrangian with respect to time is the action S.

• When a particle moves, its action is always extremized. i.e. δS = 0.

• The Euler-Lagrange equation is given by

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0

where qi are coordinates.
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