
Lorentz transformation and Rotation, a comparison

In our article, “rotation in Cartesian coordinate system” we saw that
under rotation around the origin the distance from the rotated point to the
origin remain same. Recall the following formula:

r(x, y) =
√
x2 + y2 = r(x′, y′) =

√
x′2 + y′2 (1)

This formula can be generalized to a rotation in three-dimensions, which is:

r(x, y, z) =
√
x2 + y2 + z2 = r(x′, y′, z′) =

√
x′2 + y′2 + z′2 (2)

Actually, it is easy to check that the distance between two points is also
invariant under rotation as follows:

∆r =
√

∆x2 + ∆y2 + ∆z2 =
√

∆x′2 + ∆y′2 + ∆z′2 (3)

where ∆x = x2 − x1, ∆y = y2 − y1, ∆x′ = x′2 − x′1 and so on.
A similar, but different relation can be found for Lorentz transformation.

Given Lorentz transformation, it is an easy exercise to check that following
holds:

(∆s)2 = (∆x)2+(∆y2)+(∆z)2−(c∆t)2 = (∆x′)2+(∆y′2)+(∆z′)2−(c∆t′)2

(4)
In other words, ∆s is invariant under Lorentz transformation. ∆s is

called “proper distance.” The above equation holds when the right-hand
side is bigger than zero. When it is negative, we have the following:

(c∆τ)2 = (c∆t)2−(∆x)2−(∆y2)−(∆z)2 = (c∆t′)2−(∆x′)2−(∆y′2)−(∆z′)2

(5)
In other words, ∆τ is invariant under Lorentz transformation. ∆τ is

called “proper time.”
In conclusion, we see that proper distance and proper time are invariant

under Lorentz transformation, as much as the distance is invariant under
rotation. Therefore, Lorentz transformation can be regarded as “rotation” in
4-dimension. This 4-dimension space is called Minkowski space, named after
the mathematician and former teacher of Einstein, who came up with this

1



idea in 1907 two years after Einstein discovered theory of special relativity.
We will talk more about this view and Minkowski space in later articles.
As an aside, Minkowski recalled Einstein being “a lazy dog” in his student
days, expressing his surprise on Einstein’s discovery of relativity.

Final comment. Even though one can derive time dilation formula from
Lorentz transformation it is insightful to see how it can be seen from (5).
Let’s say that a rocket is moving with constant velocity v in positive x-
direction with respect to an observer S. The rocket sees that his own clock
elapses ∆t′ while ∆x′ = 0 as his own clock is not moving with respect to
him. On the other hand, while rocket’s clock elapses ∆t′, S sees that his
clock elapses ∆t and the position of rocket changes by ∆x = v∆t. Therefore,
we see:

(c∆t′)2 − 02 = (c∆t)2 − (v∆t)2 (6)

which implies

∆t′ = ∆t

√
1 − v2

c2
(7)

This is exactly time dilation; The moving clock (i.e. the rocket’s clock) ticks
slower rate than the unmoving one (i.e. the observer S) as ∆t′ < ∆t clearly
shows.

Summary

• The distance between two points is invariant under rotation. i.e.

∆r2 = ∆x2 + ∆y2 + ∆z2 = ∆x′2 + ∆y′2 + ∆z′2

• Similarly, the proper time or the proper distance between two points
is invariant under Lorentz transformation. i.e.

(c∆τ)2 = (c∆t)2−(∆x)2−(∆y2)−(∆z)2 = (c∆t′)2−(∆x′)2−(∆y′2)−(∆z′)2

(∆s)2 = (∆x)2+(∆y2)+(∆z)2−(c∆t)2 = (∆x′)2+(∆y′2)+(∆z′)2−(c∆t′)2
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