
Multiple Integrals

What is the geometric interpretation of integration? If you know cal-
culus, you will know that integration gives you the area under a curve. In
other words, given a curve f(x), you can use integration to calculate the
area bounded by the curve and x-axis. Let’s make this analogy further.
Could we calculate volume using integration? The answer is yes. See Fig.
1. Consider we have a function z = f(x, y) and we want to know the volume
bounded by z = 0, z = f(x, y), x = a, x = b, y = c, y = d. We can obtain it
by two methods. First, we can slice the volume parallel to x-axis as in Fig.2
For simplicity we have shown only two slices. Each slice has the following
area: ∫ b

a
f(x, y)dx (1)

To obtain the full volume, we have to integrate the areas. So, we have:

V =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy (2)

Second, we can slice the volume parallel to y-axis as in Fig. 3. Again,
for simplicity, we have shown only two slices. Each slice has the following
area: ∫ d

c
f(x, y) dy (3)

Again, to obtain the full volume, we have to integrate the areas. So, we
have:

V =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx (4)

Since the volume should not depend on how we slice it and sum its pieces
altogether, (2) and (4) must be same. Therefore, if there is no confusion,
we can take off the parenthesis and express the volume as follows:

V =

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dy dx (5)

This is an example of double integral, since we have integrated twice.
However, it is easy to imagine that we can integrate as many times as we
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Figure 4

want. For example, let’s consider that we have air in rectangular bag and
the density of air is a function of position given as ρ(x, y, z). Then, what
would be the total mass inside the bag? It is easy to see that for a small
volume ∆x∆y∆z, the mass should be ρ(x, y, z)∆x∆y∆z. Therefore, the
total mass will be the following:

M =

∫ z2

z1

∫ y2

y1

∫ x2

x1

ρ(x, y, z) dx dy dz (6)

Sometimes, dV is used to denote dx dy dz, since it is infinitesimal volume
element. Using this notation, the mass of the air can be expressed as follows:

M =

∫
ρdV (7)

Let me also mention that the range of region in which the integration
is performed doesn’t necessarily have to be rectangular as we considered so
far. See Fig.4. The integration range denoted by M is given as follows.∫ x=b

x=a

(∫ y=g(x)

y=f(x)
dy

)
dx (8)

Notice also that here we integrate y first, then x. We could integrate x first,
but in such a case we would need to find the inverse of functions f and g,
so that we can express x = f−1(y) and x = g−1(y) which are unnecessarily
complicated.

All this seems somewhat abstract without an example. Therefore, let
me present you an example which I found from Wikipedia. Suppose the
integration range D is the region bounded by x = 0, y = 1, and y = x2. See
Fig.5. Then, what is the following integral?∫ ∫

D
(x+ y) dx dy (9)
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Figure 5: Integration range D

Figure 6: y integration first Figure 7: x integration first
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We can solve this problem by two ways: we can integrate y first or we
can integrate x first. In the first case, we first fix x and find the range of
y. See Fig.6. For a fixed x, y runs from x2 to 1. Furthermore, the whole
region of D is inside x = 0 and x = 1. Therefore, we have:

∫ 1

0

(∫ 1

x2

(x+ y) dy

)
dx =

∫ 1

0

([
xy +

y2

2

]y=1

y=x2

)
dx

=

∫ 1

0

(
x+

1

2
− x3 − x4

4

)
dx =

13

20
(10)

Notice also that from the first line to the second line the integrand loses
y-dependence as you perform y-integration; there is no y in the second line.
In the final step, the answer loses x-dependence as well as you perform
x-integration; the final answer is a pure number.

Now, the second way. We first fix y and find the range of x. See Fig.7.
For a fixed y, x runs from 0 to

√
y. Furthermore, the whole region of D is

inside y = 0 and y = 1. Therefore, we have:

∫ 1

0

∫ √y
0

(x+ y) dx dy =

∫ 1

0

([
x2

2
+ yx

]x=√y
x=0

)
dy

=

∫ 1

0

(y
2

+ y
√
y
)
dy =

13

20
(11)

The answer is same as before. Notice also that from the first line to the
second line the integrand loses x-dependence as you perform x-integration;
there is no x in the second line. In the final step, the answer loses y-
dependence as well as you perform y-integration; the final answer is a pure
number.

Problem 1. Calculate the following.∫ 2

−1

∫ 1

0
3x2y dx dy =

∫ 2

−1

(∫ 1

0
3x2y dx

)
dy =? (12)

Problem 2. Calculate the following.∫
N

∫
(x+ 2y) dx dy (13)

where N is the integration range bounded by x = 0, y = 0, x+ y = 1. You
can perform this integration in two ways; performing x integration first, then
performing y integration, or performing y integration first, then performing
x integration. Try both ways and check that the answers are same. (Hint1)

1First draw N . Then, consider (8) and think about what a, b, f(x), and g(x) should
be in the case in which you perform y integration for N . In the case in which you perform

x integration first for N , it should be something like
∫ y=d

y=c

∫ x=s(y)

x=t(y)
dx dy
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Summary

• Something integrated by a certain variable can be re-integrated by
different variables. This is multiple integral.

• It is guaranteed that the value for the multiple integration doesn’t
depend on which order you integrate, as long as the integration range
is same, and suitably expressed as functions of the variables.

• Nevertheless, some suitably chosen integration order may be easier
than other ones to calculate.
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