
Non-Euclidean geometry

In our earlier article “Manifold,” we introduced the concept of manifold.
There, we stated that Rn was the Euclidean space. Precisely speaking, this
was not a correct statement. Let me give you the correct statement. If you
take two vectors in the Euclidean space Rn, say ~x = (x1, x2, · · · , xn) and
~y = (y1, y2, · · · , yn) then the inner product is given by

~x · ~y = x1y1 + x2y2 + · · · + xnyn (1)

Notice that if ~z is a non-zero vector, then

~z · ~z > 0 (2)

The Euclidean space always admits the coordinate system which satisfy (1).
Such a coordinate system is called the Cartesian coordinate system which
you are familiar with. I say “admit” because there are other coordinate
systems, which do not satisfy (1), but you can use to describe the same
Euclidean space. Polar coordinate and spherical coordinate are good exam-
ples. Of course, even though (1) is re-defined in the ways appropriate for
the polar coordinate and the spherical coordinate, (2) is always satisfied.

Now, let’s talk about the Minkowski space. The Minkowski space (some-
times called “the Lorentzian space”) is also given by Rn, but the dot product
of two vectors, say ~x = (x1, x2, · · · , xn) and ~y = (y1, y2, · · · , yn) is given by

~x · ~y = −x1y1 + x2y2 + · · · + xnyn (3)

If you read our earlier article “Rotation and the Lorentz transformation,
orthogonal and unitary matrices,” it should be clear why dot product must
be defined this way in Minkowski space. Notice also that (2) is not always
satisfied. Again, if a space admits the coordinate system which satisfy (3),
it’s the Minkowski space.

The Euclidean space and the Minkowski space are examples of manifolds
with no curvature. They are not curved at all. A good example of curved
manifold would be spheres. Let’s first look at S2 (i.e. 2-sphere, or simply
sphere) closely, and what the rules of the geometry look like on 2-sphere.
This is an example of what is called “non-Euclidean geometry” which we
briefly mentioned in “Curved Space.” Certainly 2-sphere is not an Euclidean
space.
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Figure 1: the sum of the angles of a
triangle on a sphere is always bigger
than 180◦.

Figure 2: the circumference to radius
ratio of a circle on a sphere is always
less than 2π.

In “Curved Space,” we mentioned some properties of non-Euclidean
space, such as the sum of the angles of the triangle not being 180◦, and
failure to satisfy Euclid’s parallel postulate and so on. See Fig. 1.

Here, I want to mention another property of non-Euclidean space. The
ratio of the circumference of a circle to radius fails to be 2π. For example,
on a sphere, the ratio of the circumference of a circle to the radius is smaller
than 2π. As we treated a triangle on a sphere in Fig. 1, we will treat a circle
on a sphere in Fig. 2. In Fig. 2, the center of the circle is the North Pole.
Just like in the Euclidean case, a circle of radius r is defined by the set of
points distance r away from the center. Let’s calculate the circumference.
The angle θ in the figure is given by θ = r/a. Thus, the circumference is
given by

C = 2πa sin θ = 2πa sin
r

a
(4)

Then, the ratio is given by

C

r
= 2π

sin r
a

r
a

(5)

As sin θ
θ < 1, we see that the ratio is smaller than 2π. Also, it is interesting

that there is a maximum value for the circumference. It is 2πa. See Fig.
3. This is achieved when r

a = π/2. That is r = πa/2. Notice also that the
circumference decreases as r increases if r is bigger than πa/2. What is the
area of a circle with radius r? See Fig. 4. The area of “stripe” is given by
C dr. We need to integrate this as follows.

A =

∫ r

0
2πa sin

r

a
dr = 2πa2(1 − cos

r

a
) (6)

Similarly as before, this value is smaller than 4πr2. (Problem 1. What
is the maximum A can have? This should be equal to the surface area of
2-sphere with radius a. Thus, check that your answer is correct.)
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Figure 3: the biggest circle on a sphere
Figure 4: the area of a circle on a
sphere

If a is bigger, it means that the sphere is less curved. Think of the
Earth. As a is very big, we don’t usually notice that the Earth is not flat,
but actually round. So, when a is big, (4) and (6) should reduce to our usual
flat formula C = 2πr, and A = 4πr2. (Problem 2. Show this using Taylor
series!)

Having talked about 2-sphere, let’s talk about 3-sphere. Let’s say again
the radius of the 3-sphere is a. Then, a circle in this 3-sphere satisfies (4).
What would be the surface area of a 2-sphere in the 3-sphere? It turns out1

A = 4π
(
a sin

r

a

)2
(7)

An easy way of interpreting this formula is that you regard a sin r
a as the

“effective” radius as in (4). In other words, 2π times the effective radius is
the circumference and 4π times the square of the effective radius is the area
of the sphere.

Problem 3. Calculate the volume of 3-ball of radius r inside 3-sphere
using (7). Then, show that this reduces to the familiar V = 4

3πr
3 in the

limit a goes to infinity. What is the maximum volume a 3-ball can have?
Spheres are examples of constant curvature. Curvature denotes how

much manifolds are curved, and because of the symmetry of spheres all the
points on the sphere have the same curvature. The curvature turns out to
be 1/a2 in our cases. Therefore, precisely speaking, spheres are examples of
constant positive curvature.

There are examples of constant negative curvature. They are called
“pseudo-spheres.” For the pseudo-spheres with constant curvature −1/a2,
if we actually calculate the analogous formula for the formulas we had for
spheres, all the sine functions in our formulas are replaced by sine hyperbolic

1We will later show this in our article “The FRW metric and the Friedmann equations.”
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functions. For example, for (4), we have

C = 2πa sinh
r

a
(8)

for (7), we have

A = 4π
(
a sinh

r

a

)2
(9)

May I suggest an “illegal” way to derive these two equations? Mathe-
maticians will be aghast at this derivation for its lack of rigor, but I like
putting it in this way. As we mentioned, a sphere has a constant curvature
of 1/a2. Recalling that a pseudo-sphere has a constant curvature of −1/a2,
we can regard a pseudo-sphere as a sphere with radius “ia,” as its curvature
would be −1/a2. Then, (4) becomes

C = 2π(ia) sin
( r
ia

)
(10)

which is exactly (8). The derivation of (9) is also straightforward.
Also, even though we will not show here, it turns out that there are

infinitely many lines that are parallel to a certain line and pass a point in
this pseudo-sphere. Also, the sum of the angles of the triangle is always less
than 180◦.

Problem 4. Show that the ratio of the circumference to the radius is
always bigger than 2π for circles in 2 pseudo-sphere. Also show that in the
flat limit (i.e. a goes to infinity), the ratio becomes 2π. Notice that in this
limit, the curvature (i.e. −1/a2) approaches 0.

Problem 5. Show that (9) can be as big as it can be. This shows that
a 2 pseudo-sphere has an infinite area.

Let me conclude this article with a comment. In “Cosmological principle
and my view on philosophy” I introduced the cosmological principle. Cos-
mological principle suggests that our Universe has a constant curvature. So,
there are three possibilities for the geometry of the space of our Universe.
3-sphere, the Euclidean space R3 and 3-pseudo sphere. If our universe is
3-sphere, the size of our universe is finite. If our Universe is the Euclidean
space or 3-pseudo sphere, the size of our universe is infinite. All these three
possibilities for our Universe have been considered by cosmologists. We
will talk more about these three possibilities in our later article “The FRW
metric, and the Friedmann equation.”

Summary

• The inner product of ~x = (x1, x2, · · · , xn) and ~y = (y1, y2, · · · , yn), two
vectors in the Euclidean space Rn, is given by ~x · ~y = x1y1 + x2y2 +
· · · + xnyn.
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• The inner product of ~x = (x1, x2, · · · , xn) and ~y = (y1, y2, · · · , yn),
two vectors in the Minkowski space Rn, is given by ~x · ~y = −x1y1 +
x2y2 + · · · + xnyn.

• The Euclidean space and the Minkowski space are examples of mani-
folds with no curvature.

• In the limit, the radius of a sphere becomes infinite, (i.e. the curvature
of a sphere becomes zero) the sphere becomes a flat space.

• A pseudo-sphere has a constant negative curvature.

• In the limit, the curvature of a pseudo-sphere becomes zero, it becomes
a flat space.

5


