The Poisson bracket

The Poisson bracket of two quantities f and g is defined as follows:

$$
\begin{equation*}
\{f, g\}=\sum_{i} \frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}} \tag{1}
\end{equation*}
$$

One of the properties of Poisson bracket is that it is anti-symmetric. In other words,

$$
\begin{equation*}
\{f, g\}=-\{g, f\} \tag{2}
\end{equation*}
$$

It is left as an exercise to readers to verify this, as it is obvious from the definition of the Poisson bracket. This also implies:

$$
\begin{equation*}
\{f, f\}=-\{f, f\} \tag{3}
\end{equation*}
$$

which, in turn, implies:

$$
\begin{equation*}
\{f, f\}=0 \tag{4}
\end{equation*}
$$

Now, let's calculate the following quantity:

$$
\begin{align*}
\{f, H\}= & \sum_{i} \frac{\partial f}{\partial q^{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial H}{\partial q^{i}} \tag{5}\\
= & \sum_{i} \frac{\partial f}{\partial q^{i}} \dot{q}^{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i} \tag{6}\\
= & \frac{d f}{d t} \tag{7}\\
& \{f, H\}=\frac{d f}{d t} \tag{8}
\end{align*}
$$

Here, we see that Hamiltonian is closely related to the "time translation," as physicists call it. $\left(f \rightarrow f+\frac{d f}{d t} \delta t\right)$.

In the last article, we showed that Hamiltonian is conserved, i.e., remains constant as time goes on. Now, let's derive this fact again, which seems a bit more elegant. By plugging $f=H$ in (4) and (8), we obtain:

$$
\begin{equation*}
0=\{H, H\}=\frac{d H}{d t} \tag{9}
\end{equation*}
$$

There are a couple of more crucial properties of Poisson bracket. As an exercise, the readers should verify the following:

$$
\begin{equation*}
\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i} \tag{10}
\end{equation*}
$$

and, the following:

$$
\begin{array}{r}
\{A, B+C\}=\{A, B\}+\{A, C\} \\
\{A, B C\}=B\{A, C\}+\{A, B\} C \tag{12}
\end{array}
$$

which can be derived straightforwardly from the definition of Poisson bracket using Leibniz's rule. (i.e. $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$)

Problem 1. Prove the following formula.

$$
\begin{equation*}
f(t)=f_{0}+\{f, H\}_{0}+\frac{t^{2}}{2!}\{\{f, H\}, H\}_{0}+\frac{t^{3}}{3!}\{\{\{f, H\}, H\}, H\}_{0}+\cdots \tag{13}
\end{equation*}
$$

where the subscript 0 denotes the value evaluated when $t=0$.
Problem 2. Let's denote the position of an object in Cartesian coordinate by $x=q^{1}, y=q^{2}, z=q^{3}$ and its momentum by $p_{x}=p_{1}, p_{y}=p_{2}, p_{z}=$ p_{3}. Then (10) implies $\left\{x, p_{x}\right\}=\left\{y, p_{y}\right\}=\left\{z, p_{z}\right\}=1$ and all other Poisson brackets vanish. Using this relation, along with $L_{z}=x p_{y}-y p_{x}$ (i.e. the z th component of angular momentum), calculate the following. The answer to this problem will turn out to be useful in solving a problem in our later article "Noether's theorem." (Hint ${ }^{1}$)

$$
\begin{equation*}
\left\{x, L_{z}\right\}=?, \quad\left\{y, L_{z}\right\}=?, \quad\left\{z, L_{z}\right\}=? \tag{14}
\end{equation*}
$$

Summary

- $\{f, g\}=\sum_{i} \frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}}$
- $\{f, g\}=-\{g, f\}$ which implies $\{f, f\}=0$.
- $\{f, H\}=\frac{d f}{d t}$
- The Hamiltonian is conserved as $\{H, H\}=\frac{d H}{d t}=0$.
- $\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i}$.
- $\{A, B+C\}=\{A, B\}+\{A, C\}$
- $\{A, B C\}=B\{A, C\}+\{A, B\} C$

[^0]
[^0]: ${ }^{1}$ Use (11) and (12).

