
Quantum corrections to Hawking radiation spectrum

As advertised in our earlier articles “Discrete area spectrum and the Hawking radiation

spectrum II” and “The Bose-Einstein distribution, the Fermi-Dirac distribution and the

Maxwell-distribution,” let me explain how my own research on Hawking radiation was related

to the latter article. I will closely follow my original paper “Quantum corrections to Hawking

radiation spectrum.”

1 Selection rules for quantum black holes

In this section, we will rephrase our explanations in “Discrete area spectrum and the Hawking

radiation spectrum II” using mathematical formulas to fix the notation.

Let’s say that we have the following area eigenvalues (i.e. the unit areas):

Ai = A1, A2, A3, A4, A5, A6.... (1)

Then, the black hole area A must be given by the following formula:

A =
∑
i

N iAi (2)

where the N is are non-negative integers. Here, we can regard the black hole as having
∑
N i

partitions, each of which has one of the Ai as its area. In this mathematical language, we

can express the consideration of Barreira, Carfora and Rovelli as follows: the black hole with

initial area Aint =
∑
N i

intAi can turn into a black hole with final area Afin =
∑
N i

finAi

through the emission of photons, as long as Afin < Aint, without any restrictions on the set

of N i
fin.

However, if we assume that the emission of a photon is local, this is not the case. For a

photon to be emitted locally, it should be emitted from a single area quantum, not simultane-

ously from multiple area quanta separated in space. Possibly following these considerations,

Krasnov argued that1

“Consider a quantum process in which the black hole jumps from a state |Γ〉 to

state |Γ′〉, such that the horizon area changes. This, for example, can be a process

in which one of the flux lines piercing the horizon breaks, with one of the ends

falling into the black hole and the other escaping to infinity (see Fig. 1b). This is

1K. V. Krasnov, “Quantum geometry and thermal radiation from black holes,” Class. Quant. Grav. 16,

563 (1999) [gr-qc/9710006].
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an example of the emission process; the two ends of the flux line can be thought

of as the two particle anti-particle quanta in Hawking’s original picture [6] of the

black hole evaporation”

Translating this into a mathematical formula, what Krasnov argues is the following:

∆A = Aj −Ai (3)

for some Ai > Aj . In other words, the partition with area Ai on the black hole horizon

shrinks into a partition with area Aj upon the emission of a particle because the anti-particle

reaches this partition of the black hole horizon.

However, Krasnov’s argument is also troublesome. In section 4, we will explain why the

selection rule should be

∆A = −Ai (4)

for some i. Before doing so, we will explain the consequences of (4) in the next two sections.

2 The discreteness of the Hawking radiation spectrum

In our later article “A Relatively Short Introduction to General Relativity,” we will see the

following, in natural units (G = c = h̄ = 1):

r = 2M (5)

A = 4πr2 = 16πM2 (6)

kT =
1

8πM
(7)

where A is the horizon area of the black hole, T its temperature, r its radius, and M its

mass, and k is Boltzmann’s constant. Here, we consider the case of a Schwarzschild black

hole for simplicity, but it can easily be generalized to the generic case as is done in section 3.

Now consider the emission of a photon from the black hole. As the photon is emitted,

the black hole loses energy; thus, its area decreases by Ai, the unit area predicted by loop

quantum gravity as we argued in (4) in the last section. From this consideration, we can

calculate Ephoton, the energy of the emitted photon. First of all, the mass of the black hole

decreases as

∆M = −Ephoton (8)

Then, considering (6) and (7), the area of the black hole decreases as

∆A = 32πM∆M = −32πMEphoton = −4Ephoton
kT

= −Ai (9)

where in the last step, we assert that the black hole area must be decreased by the unit area

Ai predicted by loop quantum gravity. Therefore, we conclude the following:
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Figure 1: Isolated horizon framework Figure 2: Tanaka-Tamaki scenario

Ephoton =
Ai
4
kT (10)

Here, we see easily that the energy of the emitted photon is quantized because Ai is quantized.

In particular, as loop quantum gravity predicts that a non-zero minimum area exists, a non-

zero energy exists for the photons emitted from a black hole of a given temperature.

In my original paper “Quantum corrections to Hawking radiation spectrum,” I considered

three then available scenarios for the area spectrum in loop quantum gravity.

In the case of the isolated horizon framework, the minimum area is given by 4π
√

3γ where

γ is the Immirzi parameter. Therefore, we have the following for the minimum energy of the

emitted photon:

Emin ≈ 1.49kT (11)

(see Fig. 1). The Hawking radiation is truncated below this energy. The discrete frequency

values allowed for Hawking radiation are represented by solid lines. In the case of the Tanaka-

Tamaki scenario, the minimum area is given by 4πγ, where γ is the Immirzi parameter for

this case. This gives the following for the minimum energy of emitted photon:

Emin ≈ 2.462kT (12)

(see Fig. 2). In the case of the Kong-Yoon scenario, the minimum area is given by 4π
√

2.

Therefore, we have the following minimum energy:

Emin ≈ 4.44kT (13)

(see Fig. 3).

3 Alternative derivation

In this section, we present a simpler derivation. From thermodynamics, we have the following:

∆Q = T∆S (14)
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Figure 3: Kong-Yoon scenario

Plugging in the equalities

∆Q = −Ephoton (15)

∆S = −kAi/4 (16)

we recover (10).

4 Griffiths’ quantum mechanics and Pathria’s statistical

mechanics

In his famous textbook Introduction to Quantum Mechanics, Griffiths considers a statistical

mechanics problem as follows:

“Now consider an arbitrary potential, for which the one-particle energies are

E1, E2, E3, · · · , with degeneracies d1, d2, d3, · · ·. Suppose we put N particles into

this potential; we are interested in the configuration (N1, N2, N3, · · ·), for which

there are N1 particles with energy E1, N2 particles with energy E2 and so on.

How many different ways can this be achieved?”

Then, he shows that the answer is given by the following for the case of bosons:

Q =

∞∏
n=1

(Nn + dn − 1)!

Nn!(dn − 1)!
(17)

He also explains that we have the following two conditions:

∞∑
n=1

Nn = N,

∞∑
n=1

NnEn = E (18)

The first condition requires that the total number of particles is N while the second requires

that the total energy is E. To find the most probable configuration (N1, N2, N3, · · ·), he

maximizes lnQ as follows:

G ≡ lnQ+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(19)
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where G is to be maximized and α and β are Lagrange multipliers. He concludes that

Nn =
dn

eα+βEn − 1
(20)

Of course, in the case of photons, the number N is not conserved, so we set α = 0 in (19)

and (20). Furthermore, we know β = 1/(kT ), which implies

Nn =
dn

eEn/(kT ) − 1
(21)

We also know (see, e.g., Section 6.4 of “Statistical Mechanics” by Pathria) that the

intensity I(En) of photons emitted through black body radiation is given by

I(En) =
c

4
NnA =

c

4

dn
eEn/(kT ) − 1

A =
c

4

8πf2df

ehf/(kT ) − 1
A (22)

In the last two expressions, we have substituted the density of states for the degeneracy

dn in the numerator and written the photon energy En in terms of the frequency f as hf .

Recalling that the black hole (or any black body) loses energy hf upon emission of a photon

with frequency f , we can write

∆E = −hf (23)

thus,

∆E = −En (24)

This equation shows that only the radiation associated with En (i.e., a single area quanta

or nth unit area) is possible. This can be seen better by noticing that the second equation

of (18) runs parallel with (2). They are actually related by (10). Therefore, we derived (4)

(i.e., ∆A = −Ai).
Now, suppose a hypothetical case in which the area deduction is given by ∆A = Aj −Ai

as Krasnov argued. In such a case, we would have ∆E = Ej − Ei, which implies that

the energy of the emitted photon is given by hf = Ei − Ej . Given this, let’s compare the

black body radiation formula in this hypothetical case with (21). The denominator does

not match as (21)’s denominator is eEn/(kT ) − 1 while Krasnov’s hypothetical one would be

e(Ei−Ej)/(kT ) − 1. They are clearly different. Furthermore, the numerator does not match

either. In the case of (21), we have the degeneracy of the nth quanta given as dn. In Krasnov’s

hypothetical case, whether the degeneracy should be di or dj or didj is not clear. Perhaps

no consistent way exists to assign a value to the numerator such that it reduces to dn in the

case where Ei = En and Ej = 0 but is different from dn when Ei = En but Ej 6= 0. In

conclusion, Krasnov’s area deduction condition is wrong as it cannot reproduce (21).

Summary

• ∆A = −Ai. (Upon emission of a single photon during Hawking radiation, only a single

area quantum can completely disappear.)
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