Stirling's formula

Stirling's formula approximates the factorials. It is very useful.
Recall, $n!=n \times(n-1) \times \cdots 2 \times 1$. Therefore we have:

$$
\begin{equation*}
\ln (n!)=\ln n+\ln (n-1)+\cdots \ln 2+\ln 1 \tag{1}
\end{equation*}
$$

Then, we can approximate the sum as an integration as follows:

$$
\begin{equation*}
\ln (n!)=\ln n+\ln (n-1)+\cdots \ln 2+\ln 1 \approx \int_{0}^{n} \ln x d x \tag{2}
\end{equation*}
$$

Now, recall that in our earlier article "Integration by parts," we have seen:

$$
\begin{equation*}
\int \ln x d x=x \ln x-x \tag{3}
\end{equation*}
$$

Plugging this in, we get ${ }^{1}$:

$$
\begin{equation*}
\ln (n!) \approx n \ln n-n \tag{4}
\end{equation*}
$$

This is called "Stirling's formula." Actually, it turns out that one can do better. As an aside, we note:

$$
\begin{equation*}
\ln (n!)=\left(n+\frac{1}{2}\right) \ln n-n+\frac{1}{2} \ln (2 \pi)+\frac{1}{12 n}-\frac{1}{360 n^{3}}+\frac{1}{1260 n^{5}}+\cdots \tag{5}
\end{equation*}
$$

Summary

- Stirling's formula approximates the factorials.
- It can be derived by calculating $\int \ln x d x$.

[^0]
[^0]: ${ }^{1}$ Here, we used the fact that $\lim _{x \rightarrow 0} x \ln x=0$

