Taylor series

Taylor series can be easily learned by students who know some basic calculus. Taylor series (or Taylor expansion) is a way of representing a function in terms of an infinite power series.

Let's consider the following case. If y is sufficiently close to x, you may approximate $f(y)$ as $f(x)+f^{\prime}(x)(y-x)$. A natural question you may want to ask is: Is there any better way to approximate this function?

Given this situation, you may write $f(y)$ as the following.

$$
\begin{equation*}
f(y)=f(x)+f^{\prime}(x)(y-x)+A_{2}(y-x)^{2}+A_{3}(y-x)^{3}+A_{4}(y-x)^{4} \cdots \tag{1}
\end{equation*}
$$

This certainly seems to be a better approximation, if we could determine A_{2}, A_{3}, A_{4} and so on.

Let's differentiate (1)
Then we get

$$
\begin{equation*}
f^{\prime}(y)=1 \cdot f^{\prime}(x)+2 \cdot A_{2}(y-x)+3 \cdot A_{3}(y-x)^{2}+4 \cdot A_{4}(y-x)^{3} \cdots \tag{2}
\end{equation*}
$$

Differentiating again, we get

$$
\begin{equation*}
f^{\prime \prime}(y)=2 \cdot 1 \cdot A_{2}+3 \cdot 2 \cdot A_{3}(y-x)+4 \cdot 3 \cdot A_{4}(y-x)^{2} \cdots \tag{3}
\end{equation*}
$$

As this formula must be satisfied for y near x, let's plug in $y=x$. Then, we get

$$
\begin{equation*}
f^{\prime \prime}(x)=2 \cdot 1 \cdot A_{2}+0+0+0 \cdots=2 \cdot 1 \cdot A_{2} \tag{4}
\end{equation*}
$$

So, we get the following relationship.

$$
\begin{equation*}
A_{2}=f^{\prime \prime}(x) / 2! \tag{5}
\end{equation*}
$$

Also, differentiating (3), we get:

$$
\begin{equation*}
f^{\prime \prime \prime}(y)=3 \cdot 2 \cdot 1 \cdot A_{3}+4 \cdot 3 \cdot 2 \cdot A_{4}(y-x) \cdots \tag{6}
\end{equation*}
$$

Plugging in $y=x$ again, we get:

$$
\begin{equation*}
f^{\prime \prime \prime}(x)=3 \cdot 2 \cdot 1 \cdot A_{3} \tag{7}
\end{equation*}
$$

Therefore, we get:

$$
\begin{equation*}
A_{3}=f^{\prime \prime \prime}(x) / 3! \tag{8}
\end{equation*}
$$

Differentiating (6) and plugging in $y=x$ yields:

$$
\begin{equation*}
A_{4}=f^{\prime \prime \prime \prime}(x) / 4! \tag{9}
\end{equation*}
$$

We may easily generalize this to A_{n} for a larger natural number n.
If we plug in the values of A_{2}, A_{3}, A_{4} which we obtained above into (1), we get:

$$
\begin{equation*}
f(y)=f(x)+f^{\prime}(x)(y-x)+\frac{f^{\prime \prime}(x)}{2!}(y-x)^{2}+\frac{f^{\prime \prime \prime}(x)}{3!}(y-x)^{3}+\frac{f^{\prime \prime \prime \prime}(x)}{4!}(y-x)^{4}+\cdots \tag{10}
\end{equation*}
$$

Of course, there is an assumption here. The assumption is that the right-hand side converges. A necessary condition for this to happen is the following. (This is not a sufficient condition, however.)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f^{n}(x)}{n!}(y-x)^{n}=0 \tag{11}
\end{equation*}
$$

where $f^{(n)}(x)$ means that we have differentiated $f(x) n$ times.
In other words, the infinite sum doesn't converge, unless the terms that you are adding approach zero.

When you Taylor expand around 0 , you get the following formula.

$$
\begin{equation*}
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{\prime \prime \prime \prime}(0)}{4!} x^{4}+\cdots \tag{12}
\end{equation*}
$$

To confirm it, you need to plug x for y and 0 for x in the formula (10). This special case of Taylor series is also known as "Maclaurin series."

Here are some lists of Maclaurin series of several functions. Since they are not difficult, I recommend that you confirm them by yourself. Notice that $\mathcal{O}\left(x^{n}\right)$ here refers to the order x^{n} and higher. This notation is pretty common when we write down remainders in Taylor series.

$$
\begin{equation*}
e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+x^{5} / 5!+\mathcal{O}\left(x^{6}\right) \tag{13}
\end{equation*}
$$

(convergent for any number)

$$
\begin{equation*}
\ln (1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4+x^{5} / 5-x^{6} / 6+\mathcal{O}\left(x^{7}\right) \tag{14}
\end{equation*}
$$

(convergent for $-1<x \leq 1$)

$$
\begin{equation*}
\sin x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!-x^{11} / 11!+\mathcal{O}\left(x^{13}\right) \tag{15}
\end{equation*}
$$

(convergent for any number)
To get a better sense of how Taylor series works, see Fig.1. and Fig.2, which are the sums up to 5 th terms and 9 th terms of Taylor expansions for the sine function, respectively. Compare them with Fig. 3 which is the graph of the sine function. You see that as you add more terms it looks more like the sine function. Furthermore, you see that the approximations

Figure 1: $x-x^{3} / 3!+x^{5} / 5$!

Figure 2: $x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9$!

Figure 3: $\sin x$
are best when x is around zero, since we Taylor expanded sine function around $x=0$ (i.e. we plugged in $x=0$ in (10))

Problem 1. Derive the Maclaurin series for $\cos x$ up to x^{10} order. (If you could successfully derive the Taylor series for $\sin x$ this shouldn't be hard.)

Problem 2. Let $f(x)=(1+x)^{n}$. First, calculate

$$
\begin{equation*}
f^{\prime}(x)=?, \quad f^{\prime \prime}(x)=?, \quad f^{\prime \prime \prime}(x)=?, \quad f^{\prime \prime \prime \prime}(x)=? \tag{16}
\end{equation*}
$$

Then, by using Maclaurin series, show that

$$
\begin{equation*}
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\frac{n(n-1)(n-2)(n-3)}{4!} x^{4}+\cdots \tag{17}
\end{equation*}
$$

This is exactly Newton's formula which we explained in "The imagination in mathematics: "Pascal's triangle, combination, and the Taylor series for square root""

Problem 3. In this problem, you are asked to derive (14) alternatively, by using the following two formulas:

$$
\begin{gather*}
\ln (1+x)=\int \frac{1}{1+x} d x \tag{18}\\
\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\mathcal{O}\left(x^{6}\right) \tag{19}
\end{gather*}
$$

Notice that (19) is not valid when $|x|>1$, as it doesn't converge in such a case. Same is true for (14) when $|x|>1$.

A comment. Suppose you encounter divergent series such as the right-hand side of (14) or (19) when $|x|>1$. What should you do? Should you give up? The way out is converting such series into a form similar to the one of left-hand side of (14) or (19). One of such methods is invented by the French mathematician Émile Borel, and called "Borel summation method." I never knew about such a method until I learned it at a physics winter school long after I got a Master's degree.

Summary

- Taylor series is given by

$$
f(y)=f(x)+f^{\prime}(x)(y-x)+\frac{f^{\prime \prime}(x)}{2!}(y-x)^{2}+\frac{f^{\prime \prime \prime}(x)}{3!}(y-x)^{3}+\frac{f^{\prime \prime \prime \prime}(x)}{4!}(y-x)^{4}+\cdots
$$

- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots$
- $\ln (1+x) \approx x$

$$
\sin x=x-\frac{x^{3}}{3!}+\mathcal{O}\left(x^{5}\right), \quad \cos x=1-\frac{x^{2}}{2!}+\mathcal{O}\left(x^{4}\right)
$$

