
Taylor series

Taylor series can be easily learned by students who know some basic calculus. Taylor

series (or Taylor expansion) is a way of representing a function in terms of an infinite power

series.

Let’s consider the following case. If y is sufficiently close to x, you may approximate f(y)

as f(x) + f ′(x)(y − x). A natural question you may want to ask is: Is there any better way

to approximate this function?

Given this situation, you may write f(y) as the following.

f(y) = f(x) + f ′(x)(y − x) + A2(y − x)2 + A3(y − x)3 + A4(y − x)4 · · · (1)

This certainly seems to be a better approximation, if we could determine A2, A3, A4 and

so on.

Let’s differentiate (1)

Then we get

f ′(y) = 1 · f ′(x) + 2 ·A2(y − x) + 3 ·A3(y − x)2 + 4 ·A4(y − x)3 · · · (2)

Differentiating again, we get

f ′′(y) = 2 · 1 ·A2 + 3 · 2 ·A3(y − x) + 4 · 3 ·A4(y − x)2 · · · (3)

As this formula must be satisfied for y near x, let’s plug in y = x. Then, we get

f ′′(x) = 2 · 1 ·A2 + 0 + 0 + 0 · · · = 2 · 1 ·A2 (4)

So, we get the following relationship.

A2 = f ′′(x)/2! (5)

Also, differentiating (3), we get:

f ′′′(y) = 3 · 2 · 1 ·A3 + 4 · 3 · 2 ·A4(y − x) · · · (6)

Plugging in y = x again, we get:

f ′′′(x) = 3 · 2 · 1 ·A3 (7)

Therefore, we get:

A3 = f ′′′(x)/3! (8)

1



Differentiating (6) and plugging in y = x yields:

A4 = f ′′′′(x)/4! (9)

We may easily generalize this to An for a larger natural number n.

If we plug in the values of A2,A3,A4 which we obtained above into (1), we get:

f(y) = f(x) + f ′(x)(y − x) +
f ′′(x)

2!
(y − x)2 +

f ′′′(x)

3!
(y − x)3 +

f ′′′′(x)

4!
(y − x)4 + · · · (10)

Of course, there is an assumption here. The assumption is that the right-hand side

converges. A necessary condition for this to happen is the following. (This is not a sufficient

condition, however.)

lim
n→∞

fn(x)

n!
(y − x)n = 0 (11)

where f (n)(x) means that we have differentiated f(x) n times.

In other words, the infinite sum doesn’t converge, unless the terms that you are adding

approach zero.

When you Taylor expand around 0, you get the following formula.

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f ′′′′(0)

4!
x4 + · · · (12)

To confirm it, you need to plug x for y and 0 for x in the formula (10). This special case of

Taylor series is also known as “Maclaurin series.”

Here are some lists of Maclaurin series of several functions. Since they are not difficult,

I recommend that you confirm them by yourself. Notice that O(xn) here refers to the order

xn and higher. This notation is pretty common when we write down remainders in Taylor

series.

ex = 1 + x + x2/2! + x3/3! + x4/4! + x5/5! +O(x6) (13)

(convergent for any number)

ln(1 + x) = x− x2/2 + x3/3− x4/4 + x5/5− x6/6 +O(x7) (14)

(convergent for −1 < x ≤ 1)

sinx = x− x3/3! + x5/5!− x7/7! + x9/9!− x11/11! +O(x13) (15)

(convergent for any number)

To get a better sense of how Taylor series works, see Fig.1. and Fig.2, which are the

sums up to 5th terms and 9th terms of Taylor expansions for the sine function, respectively.

Compare them with Fig.3 which is the graph of the sine function. You see that as you add

more terms it looks more like the sine function. Furthermore, you see that the approximations
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Figure 1: x− x3/3! + x5/5!

Figure 2: x− x3/3! + x5/5!− x7/7! + x9/9!

Figure 3: sinx
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are best when x is around zero, since we Taylor expanded sine function around x = 0 (i.e.

we plugged in x = 0 in (10))

Problem 1. Derive the Maclaurin series for cosx up to x10 order. (If you could success-

fully derive the Taylor series for sinx this shouldn’t be hard.)

Problem 2. Let f(x) = (1 + x)n. First, calculate

f ′(x) =?, f ′′(x) =?, f ′′′(x) =?, f ′′′′(x) =? (16)

Then, by using Maclaurin series, show that

(1 +x)n = 1 +nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 +

n(n− 1)(n− 2)(n− 3)

4!
x4 + · · · (17)

This is exactly Newton’s formula which we explained in “The imagination in mathematics:

“Pascal’s triangle, combination, and the Taylor series for square root””

Problem 3. In this problem, you are asked to derive (14) alternatively, by using the

following two formulas:

ln(1 + x) =

∫
1

1 + x
dx (18)

1

1 + x
= 1− x + x2 − x3 + x4 − x5 +O(x6) (19)

Notice that (19) is not valid when |x| > 1, as it doesn’t converge in such a case. Same is true

for (14) when |x| > 1.

A comment. Suppose you encounter divergent series such as the right-hand side of (14) or

(19) when |x| > 1. What should you do? Should you give up? The way out is converting such

series into a form similar to the one of left-hand side of (14) or (19). One of such methods is

invented by the French mathematician Émile Borel, and called “Borel summation method.”

I never knew about such a method until I learned it at a physics winter school long after I

got a Master’s degree.

Summary

• Taylor series is given by

f(y) = f(x) + f ′(x)(y − x) +
f ′′(x)

2!
(y − x)2 +

f ′′′(x)

3!
(y − x)3 +

f ′′′′(x)

4!
(y − x)4 + · · ·

• ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

• ln(1 + x) ≈ x

•
sinx = x− x3

3!
+O(x5), cosx = 1− x2

2!
+O(x4)
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