Non-Abelian gauge theory in differential forms

In this article, we introduce how non-Abelian gauge theory can be expressed in the language of differential forms often used in mathematics.

Earlier, the covariant derivative was defined as follows:

$$
\begin{equation*}
D_{\mu} \psi=\left(\partial_{\mu}-i g A_{\mu}\right) \psi \tag{1}
\end{equation*}
$$

Here we will re-express the above equation in forms as:

$$
\begin{equation*}
D=d+A \tag{2}
\end{equation*}
$$

Here we have suppressed the indices (i.e. μ) and absorbed the factor $-i g$ into the definition of A.

Now $\left[D_{\mu}, D_{\nu}\right] \psi$ can be expressed as follows:

$$
\begin{align*}
& D^{2} \psi \\
&=(d+A)(d+A) \psi=(d+A)(d \psi+A \wedge \psi) \\
&=d^{2} \psi+A \wedge d \psi+d A \wedge \psi-A \wedge d \psi+A \wedge A \psi \tag{3}\\
&=(d A+A \wedge A) \psi
\end{align*}
$$

where from the first line to the second line we have used the fact that A is a one-form and the relation

$$
\begin{equation*}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\operatorname{deg} \alpha}(\alpha \wedge d \beta) \tag{4}
\end{equation*}
$$

Summarizing, we can define the field strength F as follows:

$$
\begin{equation*}
F=d A+A \wedge A \tag{5}
\end{equation*}
$$

Also, at this point, it might seem odd that $A \wedge A$ in the above equation is not zero, even though the wedge-product of an object is taken with itself. This term can be expressed in component form as follows:

$$
\begin{align*}
A & \wedge A=A_{\mu} d x^{\mu} \wedge A_{\nu} d x^{\nu} \\
& =A_{\mu} A_{\nu} d x^{\mu} \wedge d x^{\nu}=A_{\nu} A_{\mu} d x^{\nu} \wedge d x^{\mu}=-A_{\nu} A_{\mu} d x^{\mu} \wedge d x^{\nu} \\
& =\frac{A \wedge A}{2}+\frac{A \wedge A}{2}=\frac{A_{\mu} A_{\nu}}{2}-\frac{A_{\nu} A_{\mu}}{2} d x^{\mu} d x^{\nu} \\
& =\frac{1}{2}\left[A_{\mu}, A_{\nu}\right] d x^{\mu} \wedge d x^{\nu} \tag{6}
\end{align*}
$$

Using this, we can also express (5) as follows:

$$
\begin{equation*}
F=d A+\frac{1}{2}[A, A] \tag{7}
\end{equation*}
$$

We can also derive the equation of motion that F satisfies

$$
\begin{align*}
d F & =d^{2} A+d A \wedge A-A \wedge d A=d A \wedge A-A \wedge d A \\
& A \wedge F=A \wedge d A+A \wedge A \wedge A \\
& F \wedge A=d A \wedge A+A \wedge A \wedge A \tag{8}
\end{align*}
$$

Therefore we conclude:

$$
\begin{gather*}
d F+A \wedge F-F \wedge A=0 \\
d F+[A, F]=0 \tag{9}
\end{gather*}
$$

This is called the Bianchi identity. The last step can be shown as follows:

$$
\begin{align*}
A \wedge F-F \wedge A & =A_{\lambda}\left(\frac{1}{2} F_{\mu \nu}\right) d x^{\lambda} \wedge d x^{\mu} \wedge d x^{\nu}-\left(\frac{1}{2} F_{\mu \nu}\right) A_{\lambda} d x^{\mu} \wedge d x^{\nu} \wedge d x^{\lambda} \tag{10}\\
& =\left[A_{\lambda}, \frac{1}{2} F_{\mu \nu}\right] d x^{\lambda} \wedge d x^{\mu} \wedge d x^{\nu}=[A, F] \tag{11}
\end{align*}
$$

Also, if we obtain the equation of motion by varying the Yang-Mills action (i.e. $\operatorname{Tr} F_{\mu \nu} F^{\mu \nu}$), we obtain:

$$
\begin{equation*}
d * F+[A, * F]=0 \tag{12}
\end{equation*}
$$

We will not show the proof. In the presence of charge, as we considered in our earlier article "The Maxwell Lagrangian and its equation of motion," the right-hand side of (12) (i.e. 0) is simply replaced by J.

Finally, in the earlier article "Non-Abelian gauge theory," we mentioned the following infinitesimal gauge transformation:

$$
\begin{gather*}
A_{\mu}^{a} \rightarrow A_{\mu}^{a}+\partial_{\mu} \theta^{a}-g f^{a b c} \theta^{b} A_{\mu}^{c} \tag{13}\\
F_{\mu \nu}^{a} \rightarrow F_{\mu \nu}^{a}-g f^{a b c} \theta^{b} F_{\mu \nu}^{c} \tag{14}
\end{gather*}
$$

In the differential forms language these are translated into:

$$
\begin{gather*}
A \rightarrow A+d \theta+[A, \theta] \tag{15}\\
F \rightarrow F+[F, \theta] \tag{16}
\end{gather*}
$$

These equations can be shown by using following facts:

$$
\begin{gather*}
A=-i g A_{\mu} d x^{\mu}=-i g A_{\mu}^{a} T^{a} d x^{\mu} \tag{17}\\
\theta=-i g \theta^{b} T^{b} \tag{18}\\
F=(-i g) \frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}=(-i g) \frac{1}{2} F_{\mu \nu}^{a} T^{a} d x^{\mu} \wedge d x^{\nu} \tag{19}\\
{\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}} \tag{20}
\end{gather*}
$$

where we have revived the $-i g$ factor that we had absorbed in the definition of A in (2).
Notice that (15) is exactly $\omega^{a} \rightarrow \omega^{a}+D \Lambda^{a}$ obtained in "Gauge transformation in dreibein."

Problem 1. Convince yourself that (12) is equivalent to $D_{\mu} F^{\mu \nu}=0$ obtained in our earlier article.

Summary

- In differential form notation, a covariant derivative is often written as

$$
D=d+A
$$

- Then, the field strength is given by

$$
D^{2}=F=d A+A \wedge A
$$

- The Bianchi identity is given by

$$
d F+A \wedge F-F \wedge A=d F+[A, F]=0
$$

- The equation of motion is given by

$$
d * F+[A, * F]=0
$$

- Under the gauge transformation, we have

$$
\begin{gathered}
A \rightarrow A+D \theta \\
F \rightarrow F+[F, \theta]
\end{gathered}
$$

