Addition, subtraction for differentiation and Leibniz's rule

Let a function $h(x)$ given by a sum of two functions $f(x)$ and $g(x)$. In other words, $h(x)=f(x)+g(x)$. Then, it is easy to see that

$$
\begin{align*}
\frac{d h}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{h(x+\Delta x)-h(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)+g(x+\Delta x)-g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =\frac{d f}{d x}+\frac{d g}{d x} \tag{1}
\end{align*}
$$

Therefore, the derivative of sum of two functions is equal to sum of derivative of each function.
Convince yourself the followings as well. If $k(x)=f(x)-g(x)$,

$$
\begin{equation*}
\frac{d k}{d x}=\frac{d f}{d x}-\frac{d g}{d x} \tag{2}
\end{equation*}
$$

If $m(x)=c f(x)$, where c is a constant, we have:

$$
\begin{equation*}
\frac{d m}{d x}=c \frac{d f}{d x} \tag{3}
\end{equation*}
$$

Now, what would be the derivatives of functions multiplied together? Let $p(x)=f(x) g(x)$ and let's find $d p / d x$.

$$
\begin{align*}
\frac{d p(x)}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{p(x+\Delta x)-p(x)}{\Delta x} \\
\frac{d(f(x) g(x))}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x+\Delta x)+f(x) g(x+\Delta x)-f(x) g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} g(x+\Delta x)+\lim _{\Delta x \rightarrow 0} f(x) \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{d f(x)}{d x} g(x+\Delta x)+f(x) \frac{d g(x)}{d x} \\
\frac{d(f(x) g(x))}{d x} & =\frac{d f(x)}{d x} g(x)+f(x) \frac{d g(x)}{d x} \tag{4}
\end{align*}
$$

This rule is called "Leibniz's rule."
Deriving Leibniz's rule in such a cumbersome way may not quite illuminate what is actually happening. So, let's derive it in another way, a way your math professor in university would not allow. When x becomes $x+d x, f$ becomes $f+d f, g$ becomes $g+d g$ and p becomes $p+d p$. In other words,

$$
\begin{equation*}
p=f g \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
p+d p=(f+d f)(g+d g)=f g+d f g+f d g+d f d g \tag{6}
\end{equation*}
$$

If we plug (5) into the above equation, we get

$$
\begin{align*}
p+d p & =p+d f g+f d g+d f d g \tag{7}\\
d p & =d f g+f d g+d f d g \tag{8}
\end{align*}
$$

If we divide the above formula by $d x$, we get

$$
\begin{equation*}
\frac{d p}{d x}=\frac{d f}{d x} g+f \frac{d g}{d x}+\frac{d f}{d x} d g \tag{9}
\end{equation*}
$$

However, we know that $d g$ is infinitesimal, so the last term is zero. Thus, we get

$$
\begin{equation*}
\frac{d p}{d x}=\frac{d f}{d x} g+f \frac{d g}{d x} \tag{10}
\end{equation*}
$$

which is exactly (4).
Problem 1. Show the following. (Hint ${ }^{1}$)

$$
\frac{d(f(x) g(x) h(x))}{d x}=\frac{d f(x)}{d x} g(x) h(x)+f(x) \frac{d g(x)}{d x} h(x)+f(x) g(x) \frac{d h(x)}{d x}
$$

Summary

- $\frac{d(f+g)}{d x}=\frac{d f}{d x}+\frac{d g}{d x}$
- $\frac{d(f-g)}{d x}=\frac{d f}{d x}-\frac{d g}{d x}$
- If $m(x)=c f(x)$ where c is a constant,

$$
\frac{d m}{d x}=c \frac{d f}{d x}
$$

- Leibniz's rule is given by

$$
\frac{d(f g)}{d x}=\frac{d f}{d x} g+f \frac{d g}{d x}
$$

[^0]
[^0]: ${ }^{1}$ Let $g(x) h(x)=u(x)$ and calculate $d(f(x) u(x)) / d x$. You will need to use Leibniz's rule twice.

