Addition, subtraction for differentiation and Leibniz’s rule

Let a function h(z) given by a sum of two functions f(z) and g(z). In other words,
h(z) = f(x) + g(x). Then, it is easy to see that
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Therefore, the derivative of sum of two functions is equal to sum of derivative of each function.
Convince yourself the followings as well. If k(z) = f(z) — g(x),
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If m(x) = c¢f (x), where c is a constant, we have:
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Now, what would be the derivatives of functions multiplied together? Let p(z) = f(x)g(z)
and let’s find dp/dzx.
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This rule is called “Leibniz’s rule.”

Deriving Leibniz’s rule in such a cumbersome way may not quite illuminate what is
actually happening. So, let’s derive it in another way, a way your math professor in university
would not allow. When x becomes z+dzx, f becomes f+df, g becomes g+ dg and p becomes
p + dp. In other words,

p=fg (5)



p+dp=(f+df)(g+dg) = fg+df g+ fdg+df dg (6)

If we plug (5) into the above equation, we get

p+dp = p+dfg+ fdg+dfdg (7)
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If we divide the above formula by dx, we get
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However, we know that dg is infinitesimal, so the last term is zero. Thus, we get
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which is exactly (4).
Problem 1. Show the following. (Hint!)
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If m(z) = cf(x) where ¢ is a constant,
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e Leibniz’s rule is given by

et g(x)h(z) = u(x) and calculate d(f(z)u(z))/dz. You will need to use Leibniz’s rule twice.



