Addition and subtraction rules for trigonometric functions

Having introduced the rotation in Cartesian coordinate system, we are on a concrete position to derive addition and subtraction rule for trigonometric functions.

See Fig. 1. We rotate a point given by $(r \cos \alpha, r \sin \alpha)$ by the angle θ. Then the coordinate for the rotated point will be given by $(r \cos (\alpha+$ $\theta), r \sin (\alpha+\theta))$. Plugging $x=r \cos \theta$ and $y=r \sin \theta, x^{\prime}=r \cos (\alpha+\theta)$ and $y^{\prime}=r \sin (\alpha+\theta)$ in the rotation formula we just obtained in the previous article, we get the following:

$$
\begin{align*}
r \cos (\alpha+\theta) & =r \cos \alpha \cos \theta-r \sin \alpha \sin \theta \tag{1}\\
r \sin (\alpha+\theta) & =r \cos \alpha \sin \theta+r \sin \alpha \cos \theta \tag{2}
\end{align*}
$$

Dividing the both-hand sides by r, and rearranging a little bit, we get the following called "addition rules" for trigonometric functions.

$$
\begin{align*}
& \sin (\alpha+\theta)=\sin \alpha \cos \theta+\cos \alpha \sin \theta \tag{3}\\
& \cos (\alpha+\theta)=\cos \alpha \cos \theta-\sin \alpha \sin \theta \tag{4}
\end{align*}
$$

The subtraction rules are also easily obtained by substituting θ for $-\theta$ in the addition rules, and using the fact that $\cos (-\theta)=\cos \theta$ and $\sin (-\theta)=$ $-\sin \theta$. Explicitly, we get:

$$
\begin{aligned}
& \sin (\alpha+(-\theta))=\sin \alpha \cos (-\theta)+\cos \alpha \sin (-\theta)=\sin \alpha \cos \theta-\cos \alpha \sin \theta \\
& \cos (\alpha+(-\theta))=\cos \alpha \cos (-\theta)-\sin \alpha \sin (-\theta)=\cos \alpha \cos \theta-\sin \alpha \sin \theta
\end{aligned}
$$

This completes the proof.
Problem 1. Obtain the values for $\sin 75^{\circ}$ and $\sin 15^{\circ}$. (Hint ${ }^{1}$)
Problem 2. Prove $\sin (2 \theta)=2 \sin \theta \cos \theta$.
Problem 3. Prove $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$.
Problem 4. Prove $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$.

$$
{ }^{1} \sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right), \quad \sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)
$$

Summary

- The cosines and sines of the sum of two angles are expressible in terms of the cosines and sines of the original two angles.

