Addition and subtraction rules for trigonometric functions

Having introduced the rotation in Cartesian coordinate system, we are on a concrete position to derive addition and subtraction rule for trigonometric functions.

See Fig. 1. We rotate a point given by $(r \cos \alpha, r \sin \alpha)$ by the angle θ . Then the coordinate for the rotated point will be given by $(r \cos(\alpha + \theta), r \sin(\alpha + \theta))$. Plugging $x = r \cos \theta$ and $y = r \sin \theta$, $x' = r \cos(\alpha + \theta)$ and $y' = r \sin(\alpha + \theta)$ in the rotation formula we just obtained in the previous article, we get the following:

$$r\cos(\alpha + \theta) = r\cos\alpha\cos\theta - r\sin\alpha\sin\theta \tag{1}$$

$$r\sin(\alpha + \theta) = r\cos\alpha\sin\theta + r\sin\alpha\cos\theta \tag{2}$$

Dividing the both-hand sides by r, and rearranging a little bit, we get the following called "addition rules" for trigonometric functions.

$$\sin(\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta \tag{3}$$

$$\cos(\alpha + \theta) = \cos\alpha\cos\theta - \sin\alpha\sin\theta \tag{4}$$

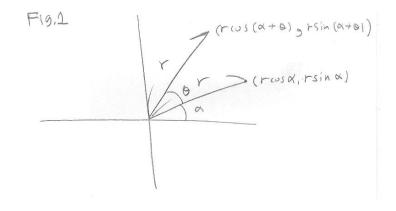
The subtraction rules are also easily obtained by substituting θ for $-\theta$ in the addition rules, and using the fact that $\cos(-\theta) = \cos\theta$ and $\sin(-\theta) = -\sin\theta$. Explicitly, we get:

 $\sin(\alpha + (-\theta)) = \sin\alpha\cos(-\theta) + \cos\alpha\sin(-\theta) = \sin\alpha\cos\theta - \cos\alpha\sin\theta$ $\cos(\alpha + (-\theta)) = \cos\alpha\cos(-\theta) - \sin\alpha\sin(-\theta) = \cos\alpha\cos\theta - \sin\alpha\sin\theta$

This completes the proof.

Problem 1. Obtain the values for $\sin 75^{\circ}$ and $\sin 15^{\circ}$. (Hint¹) **Problem 2.** Prove $\sin(2\theta) = 2\sin\theta\cos\theta$. **Problem 3.** Prove $\cos(2\theta) = \cos^2\theta - \sin^2\theta$. **Problem 4.** Prove $\sin^2\theta = \frac{1 - \cos 2\theta}{2}$.

 $^{1}\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ}), \qquad \sin 15^{\circ} = \sin(45^{\circ} - 30^{\circ})$



Summary

• The cosines and sines of the sum of two angles are expressible in terms of the cosines and sines of the original two angles.