
Re-visiting angular momentum conservation in central

force

As promised in our earlier articles, we will re-visit angular momentum mathematically in

this article, and re-derive angular momentum conservation in central force.

In particular, we will upgrade the angular momentum to a vector. Remember that the

magnitude of angular momentum depends on how fast you rotate. So, it is natural that the

direction of the angular momentum must depend on which direction you rotate; if you move

on x− y plane (i.e. you rotate around z axis), your angular momentum is in z direction, and

if you move on y − z plane (i.e. you rotate around x axis), your angular momentum is in x

direction, if you move on z−x plane (i.e. you rotate around y axis), your angular momentum

is in x-direction.

Now, let me state how the angular momentum is defined mathematically. Angular mo-

mentum ~L is defined as follows by using cross product:

~L = ~r × ~p (1)

where ~r is the position vector and ~p the momentum vector. If we express the position vector

and the momentum vector in Cartesian coordinate as follows,

~r = xî+ yĵ + zk̂ (2)

~p = pxî+ py ĵ + pz k̂ (3)

and call the x, y, z-components of angular momentum by Lx, Ly, Lz as follows

~L = Lxî+ Ly ĵ + Lz k̂ (4)

we have (Problem 1. Check this!)

Lx = ypz − zpy (5)

Ly = zpx − xpz (6)

Lz = xpy − ypx (7)

We can also check that the direction mentioned earlier coincides. For example, if you move

on x− y plane, we have z = pz = 0 which implies Lx = Ly = 0 and Lz is the only non-zero

component of angular momentum; the angular momentum is in z-direction.

Now, let’s consider such a case but using polar coordinate.
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Figure 1: Angular momentum

~r = r cos θî+ r sin θĵ (8)

~p = m~v = mvxî+mvy ĵ (9)

where

vx =
dx

dt
=
dr

dt
cos θ − r dθ

dt
sin θ (10)

vy =
dy

dt
=
dr

dt
sin θ + r

dθ

dt
cos θ (11)

Plugging this into (7), we obtain (Problem 2. Check this!):

~L = mr2θ̇k̂ (12)

So, this coincides with our earlier formula! Also, notice that ~L is in z-direction if you move

counter-clockwise (i.e. θ̇ > 0) and is in negative z-direction if you move clockwise (i.e. θ̇ < 0).

Actually, there is an easier way to obtain the above formula. Recall the definition of cross

product:

|~L| = |~r||~p| sin θ (13)

where θ is the angle between ~r and ~p. See Fig.l. ~p is composed of two parts. The one

parallel to ~r (denoted here as |~p| cos θ) and the one orthogonal to ~r (denoted here as |~p| sin θ).
The one parallel to ~r doesn’t contribute to the cross product, while only the orthogonal one

does. However, the orthogonal velocity is rθ̇. Therefore, |~L| = mr2θ̇. It also goes without

saying that the direction of the angular momentum is k̂ direction since both position and

momentum vectors lie on x− y plane.

Let me explain once more using polar coordinate. We have

~r = r r̂, ~p = m~v = mṙ r̂ +mrθ̇ θ̂ (14)
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Then, ~L = ~r × ~p = mr2θ̇k̂, if we use r̂ × r̂ = 0, and r̂ × θ̂ = k̂.

So, why all this fuss about angular momentum? It is because in central force (i.e. the

force is in the r̂ direction, toward center) the angular momentum is conserved. Let’s prove

this:

d~L

dt
=

d~r

dt
× ~p+ ~r × d~p

dt
(15)

=
d~r

dt
×md~r

dt
+ ~r × ~F (16)

= ~r × ~F (17)

where in the first step we used Leibniz rule and in the second step we use the fact that a

vector cross producted itself is zero. (Those of you who know torque will notice that the

above formula is exactly torque, since τ = rF sin θ.) However, notice also that ~r × ~F should

be zero as well since both ~r and ~F are in radial direction. So, angular momentum is indeed

conserved! In other words,

mr2θ̇ = constant (18)

Remember also that angular momentum is a vector, so it has both magnitude and di-

rection. Therefore, if angular momentum is conserved, not only its magnitude but also its

direction is conserved. This has a far reaching consequence. If the direction of the angular

momentum is along say, z-axis, it means that the orbit of the planet is in x − y plane. As

long as the direction of angular momentum remains along z-axis, the orbit of the planet will

remain in x − y plane. More generally, as long as the angular momentum is conserved, the

orbit of the planet will remain in the same plane.

Finally, we will consider the conservation of total angular momentum. Consider the solar

system, in which the Sun rotates around itself, and planets orbit around the Sun. Now,

consider planet A. It will receive force from the Sun, and this will not change the angular

momentum of planet A, as we just argued. However, there are additional gravitational forces

from the other planets. They do change the angular momentum of planet A as they exert

torque on the planet A. However, as we will show now, the total angular momentum, i.e. the

sum of the angular momentum of all the planets and the Sun will remain constant, if there

is no external force acting on the solar system.

Let’s denote the mass, the position and the velocity of each object (i.e. the planets and

the Sun) by mi, ~ri, and ~vi. Then, the total angular momentum is given by

~Ltotal =
∑
i

~ri ×mi~vi (19)

Taking the time derivative, we get

d~Ltotal

dt
=

∑
i

~vi ×mi~vi +
∑
i

~ri × ~Fi =
∑
i

~ri × ~Fi (20)
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where ~Fi is the force exerted on object i. Let’s denote the force exerted on object i by object

j ~Fij . Then, we have

~Fi =
∑
j

Fij (21)

Using this relation, (20) can be re-expressed as

d~Ltotal

dt
=

∑
i

∑
j

~ri × ~Fij (22)

Renaming the label i by j and the label j by i, we get 1

d~Ltotal

dt
=

∑
j

∑
i

~rj × ~Fji (23)

Now, remember Newton’s third law it says ~Fji = −~Fij . Using this relation along with∑
j

∑
i =

∑
i

∑
j , we get

d~Ltotal

dt
=

∑
i

∑
j

−~rj × ~Fij (24)

Adding (22) and (24), we get

2
d~Ltotal

dt
=

∑
i

∑
j

(~ri − ~rj)× ~Fij (25)

Notice that ~ri − ~rj is a vector pointing from object i to object j. As ~Fij is directed along

this direction (i.e. parallel to ~ri − ~rj), we obtain (~ri − ~rj)× ~Fij is zero. Thus, we conclude

d~Ltotal

dt
= 0 (26)

Notice that the treatment here is general enough; all we assumed was that the force

between two objects is along the line that connects them. This is true not just for gravitational

force, but for most forces.

Problem 3. Why is the most angular momentum of the solar system due to the planets,

not due to the Sun, even though the Sun is much heavier than the planets?

Problem 4. Consider the case in which there are external forces acting on objects in the

system in addition to the internal forces between the object in the system. In other words,

~Fi = ~Fi(ext) +
∑
j

~Fij (27)

where ~Fi(ext) denotes the force exerted on object i by another object outside of the system.

Then, show that the time derivative of the total angular momentum of the system is given

by

d~Ltotal

dt
=

∑
i

~ri × ~Fi(ext) (28)

In other words, it is given by the external torque.

1You are allowed to change the labels. If you are not sure why, read our later article “Einstein summation

convention.”
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Summary

• The angular momentum ~L is defined by

~L = ~r × ~p

where ~r is the position vector, and ~p is the momentum vector.

• If an object moves in x− y plane, its angular momentum is in z-direction.

• As
d~L

dt
= ~r × ~F

angular momentum is conserved if ~F is in radial direction, i.e., parallel to ~r.
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