
Angular momentum in quantum mechanics

In this article, we will quantize angular momentum and calculate its eigenvalues. From

classical mechanics, you may recall:

~L = ~r × ~p (1)

In other words, in Cartesian coordinate:

Lx = ypz − zpy (2)

Ly = zpx − xpz (3)

Lz = xpy − ypx (4)

These formulas also make sense in quantum mechanics, if we interpret Lx,Ly,Lz,x,y,z,px,py,pz

not as numbers but as operators (i.e. matrices).

It is necessary to find the commutators between the different components of angular

momentum to understand the quantum version of angular momentum. Using the following

facts,

[x, px] = [y, py] = [z, pz] = ih̄ (5)

[x, y] = [y, z] = [z, x] = [px, py] = [py, pz] = [pz, px] = 0 (6)

[x, py] = [x, pz] = [y, px] = [y, pz] = [z, px] = [z, py] = 0 (7)

we obtain:

[Lx, Ly] = [ypz − zpy, zpx − xpz]

= [ypz − zpy, zpx]− [ypz − zpy, xpz]

= [ypz, zpx]− [−zpy, xpz]

= −ih̄ypx + ih̄pyx = ih̄Lz (8)

Similarly, we can easily obtain:

[Ly, Lz] = ih̄Lx, [Lz, Lx] = ih̄Ly (9)

Notice that [La, Lb] = ih̄Lc if a, b, c is in a cyclic order. We can actually write this as

[Li, Lj ] = ih̄εijkLk (10)

where Einstein summation convention is assumed for repeated index k, even though it doesn’t

appear as an upper index and a lower index. Of course, we also assume i, j, k run from 1 to

3 and L1 = Lx, L2 = Ly, L3 = Lz.
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In our earlier article on Heisenberg’s uncertainty principle, we mentioned that we can

have a state with definite position, because [x, y] = [y, z] = [z, x] = 0. The same is true

for momentum. However, you see here that the same is not true for angular momentum,

because its components do not commute with each other; we cannot have a state with

definite Lx, definite Ly and definite Lz at the same time. So, let’s just try to find a state

with definite Lz only. In other words, let’s try to find the eigenvalues and eigenvectors of Lz.

We could have found the eigenvalues and eigenvectors of Lx or Ly instead, but it is a common

practice to consider Lz. After all, it doesn’t matter, because calling which components are

x-component, y-component and z-component is totally arbitrary. We would have gotten the

same eigenvalues if we considered Lx and Ly instead of Lz.

From (9), we can easily obtain the following relations:

[Lz, Lx + iLy] = h̄(Lx + iLy) (11)

[Lz, Lx − iLy] = −h̄(Lx − iLy) (12)

If we define as follows:

L+ ≡ Lx + iLy (13)

L− ≡ Lx − iLy (14)

we can rewrite the above formulas as follows:

[Lz, L+] = h̄L+, [Lz, L−] = −h̄L− (15)

Moreover, let’s define “L2” as follows:

L2 = L2
x + L2

y + L2
z (16)

This corresponds to the square of the magnitude of angular momentum. Then, it is easy to

check the followings:

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0 (17)

[L2, L+] = [L2, L−] = 0 (18)

L2 = L2
z + Lz + L−L+ = L2

z − Lz + L+L− (19)

Now, let’s consider a simultaneous eigenvector of L2 and Lz. Such a vector always exists, as

L2 and Lz commute which implies that we can always find a basis in which the matrices L2

and Lz are diagonal. Let’s denote such a vector |(l̃2),m〉, where

L2|(l̃2),m〉 = l̃2h̄2|(l̃2),m〉 (20)

Lz|(l̃2),m〉 = mh̄|(l̃2),m〉 (21)

In other words, we label such a vector by the eigenvalues of L2 and Lz. Note that l̃2 and m

are dimensionless, as h̄ has the dimension of angular momentum.
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Then, it is easy to see the followings:

L2L+|(l̃2),m〉 = L+L
2|(l̃2),m〉

= L+l
2h̄2|(l̃2),m〉

= l̃2h̄2L+|(l̃2),m〉 (22)

Therefore, we conclude:

L2(L+|(l̃2),m〉 = l̃2h̄2(L+|(l̃2),m〉) (23)

In other words, L+|(l̃2),m〉 is an eigenvector of L2 with eigenvalues l̃2h̄2. We also have:

LzL+|(l̃2),m〉 = (L+Lz + h̄L+)|(l̃2),m〉

= L+mh̄|(l̃2),m〉+ h̄L+|(l̃2),m〉

= (m+ 1)h̄L+|(l̃2),m〉 (24)

Therefore, we conclude:

Lz(L+|(l̃2),m〉) = (m+ 1)h̄(L+|(l̃2),m〉) (25)

In other words, L+|(l̃2),m〉 is an eigenvector of Lz with eigenvalues (m+ 1)h̄.

Problem 1. Similarly, show that L−|(l̃2),m〉 is an eigenvector of L2 and Lz with eigen-

values of l̃2h̄2 and (m− 1)h̄.

Now, given |(l̃2),m〉, we can apply multiple numbers of L+s or L−s to construct an

eigenvector of L2 and Lz with the same eigenvalue of L2, but a different eigenvalue of Lz.

For example,

Lz

(
(L+)n|(l̃2),m〉

)
= (m+ n)h̄

(
(L+)n|(l̃2),m〉

)
(26)

Lz

(
(L−)n|(l̃2),m〉

)
= (m− n)h̄

(
(L−)n|(l̃2),m〉

)
(27)

In other words, (L+)n|(l̃2),m〉 is proportional to |(l̃2),m + n〉 and (L−)n|(l̃2),m〉 is propor-

tional to |(l̃2),m− n〉.
At first glance, given an eigenvector |(l̃2),m〉, it may seem that one can construct other

eigenvectors with Lz eigenvalues as high as or as low as we want, if we choose big enough n.

But, this is troublesome, as the square of Lz should never be bigger than L2 eigenvalues, as:

L2 − L2
z = L2

x + L2
y ≥ 0 (28)

However, the formulas (26) and (27) are always satisfied. The only possibility is that

(L+)n|(l̃2),m〉 is zero for big ns. Similarly for (L−)n|(l̃2),m〉. This implies that there exists

k such that (L+)k|(l̃2),m〉 6= 0, but (L+)k+1|(l̃2),m〉 = 0. Such a vector (L+)k|(l̃2),m〉 is

called highest weight vector. Now, let’s consider a highest weight vector |(l̃2), l〉. Then, we

have:

L+|(l̃2), l〉 = 0 (29)
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which implies

0 = L−L+|(l̃2), l〉 = (L2 − L2
z − h̄Lz)|(l̃2), l〉 (30)

= (l̃2 − l2 − l)h̄2|(l̃2), l〉 (31)

As |(l̃2), l〉 6= 0, we conclude

l̃2 = l2 + l = l(l + 1) (32)

In fact, it is customary to use the notation |l, m〉 instead of |(l̃2),m〉 or |(l(l+ 1)),m〉. From

now on, we will use this notation. In other words,

L2|l, m〉 = l(l + 1)h̄2|l, m〉 (33)

Lz|l, m〉 = mh̄|l, m〉 (34)

On the other hand, we can apply L−s to |l, l〉 to construct eigenvectors with lower Lz

eigenvalues. Of course, this process should terminate at some point and the vector so obtained

must be zero. Let’s find how lowest the eigenvalue of Lz can be. Let’s say (L−)a|l, l〉 6= 0,

while (L−)a+1|l, l〉 = 0. Then, we have:

0 = L+(L−)a+1|l, l〉 = L+L−(L−)a|l, l〉 (35)

= (L2 − L2
z + h̄Lz)(L−)a|l, l〉 (36)

=
(
l(l + 1)− (k − a)2 + (k − a)

)
h̄2|l, l〉 (37)

Since (L−)a|l, l〉 6= 0, we have:

l(l + 1) = (l − a)2 − (l − a) (38)

Therefore, we obtain:

a = 2l,−1 (39)

As a can’t be negative we conclude a = 2l. Now, notice that a should be an integer, as we

cannot act “2.5” or “3.7” times of operator L−. Therefore, we see that l must be non-negative

half-integer as follows:

l = 0, 1/2, 1, 3/2, 2 · · · (40)

Now, what is the lowest possible value for Lz given l? From (27), we have:

Lz

(
(L−)2l|l, l〉

)
= −l

(
(L−)2l|l, l〉

)
(41)

Here, we see that (L−)2l|l, l〉 must be proportional to |l, − l〉.
Finally, we see that the following vectors

|l, l〉, |l, l − 1〉, |l, l − 2〉, · · · , |l, − l + 1〉, |l, − l〉 (42)

span the eigenvectors of L2 with eigenvalue l(l + 1). It is also easy to see that this vector

space is (2l + 1) dimensional.
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Therefore, we conclude, in 3 space dimensions, both the square of magnitude of angular

momentum and the value of the angular momentum along certain direction (for example ẑ

direction as considered in this article) are quantized.

Finally, let me conclude this article with four comments.

First, in our earlier article “Noether’s theorem,” we have seen that Lz generates the

rotation around x-y plane. Recall that this is because

{Lz, x} = y, {Lz, y} = −x (43)

Here, I want to mention that the z-component of the position doesn’t change under the

rotation around x-y plane, because {Lz, z} = 0, which you can check. What about the

Poisson bracket between other components of angular momentum and the components of

position? Remember the cylic order. We can change x to y and y to z and z to x. Thus,

{Lx, y} = z, {Lx, z} = −y, {Lx, x} = 0 (44)

By changing x to y and y to z and z to x again, we get

{Ly, z} = x, {Ly, x} = −z, {Ly, y} = 0 (45)

Summarizing all these, we can write

{Li, rj} = εijkrk (46)

where r1 = x, r2 = y, r3 = z. Similarly, it is not hard to find

{Li, pj} = εijkpk (47)

Notice that (46) and (47) have the same form. In other words,

{Li, Qj} = εijkQk (48)

where Qi is ri for (46) and pi for (47). Is this a coincidence?

No. Recall that the angular momentum generates the rotation, and the rotation acts the

same for all vectors. You sort of have seen this in our earlier article “Coriolis force, revisiting.”

For a constant vector ~Q, you saw that the (anti-clockwise) rotation around the axis ~ω is given

by ~ω × ~Q, i.e., εijkωiQj . This is easy to confirm from (48). The clockwise rotation around

the axis ~ω is generated by ωiLi. Therefore, the anti-clockwise rotation around the same axis

is generated by −ωiLi. Thus,

{−ωiLi, Qk} = −εikjωiQj = εijkωiQj (49)

which perfectly agrees. Then, what will happen if Qj is the angular momentum Lj? By

plugging in this (48), we obtain

{Li, Lj} = εijkLk (50)
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If we consider the relation between the Poisson bracket and the commutator, we see that

we have derived (10) just from the property that a vector such as angular momentum must

satisfy. Then, how about [Lz, L
2] or {Lz, L

2}? L2 is a scalar, as it is the dot product of two

vectors, ~L and ~L. A scalar doesn’t transform under rotation. For example, a 30 cm ruler

is 30 cm, no matter how you rotate it. Therefore, we conclude that [Lz, L
2] is zero. Notice

that we have derived (17) without doing any calculation.

Second, there are two types of angular momentum in quantum mechanics: orbital angular

momentum and spin angular momentum (also called “spin”). Orbital angular momentum is

due to the motion of particle while spin is not. Spin is an intrinsic angular momentum that

has no classical counterparts. A particle has an angular momentum called spin even when

it’s not rotating or moving. Also, different particles have different spins. For example, Higgs

boson has spin 0 (i.e., l = 0), electrons and quarks have spin 1/2 (i.e., l = 1/2), photon has

spin 1 (i.e., l = 1) and graviton has spin 2 (i.e., l = 2). (Let me correct what I just said.

Every particle that is not spin 0 has an angular momentum called spin even when it is not

moving. Of course, if a particle is spin 0 it doesn’t have spin.) As we explained in “Electron

magnetic moment” we cannot attribute the spin of an electron to its motion, because the

g-factor is not 1, but approximately 2. In our article “Spherical harmonics,” we will give you

yet another reason why we cannot attribute the spin of an electron to its motion.

In this article, we derived the commutation relations of angular momentum, namely,

[Li, Lj ] = ih̄εijkLk from the classical relation ~L = ~r × ~p and by promoting ~r and ~p into

quantum operators that satisfy certain commutation relations. As ~r and ~p concern the

actual position and the actual momentum of particle, the commutation relation of angular

momentum we derived only concern for orbital angular momentum, not for spin angular

momentum. You are right. However, recall what we just said in the last comment. [Li, Qj ] =

iεijkQk must be satisfied for any vector Qi. This is also true when Qi is the spin angular

momentum, and Li, the angular momentum concerned is the spin angular momentum. Thus,

we see that [Li, Lj ] = ih̄εijkLk must be true when Li is the spin angular momentum. Then,

the subsequent calculations and derivations will exactly follow like the ones presented in this

article. Then, we will get the same conclusion as we obtained for orbital angular momentum.

However, as you will see in “Spherical harmonics,” for orbital angular momentum, only integer

ls are allowed, while there is no same restriction for spin angular momentum. Instead, as we

saw in (39), 2l must be a non-negative integer. In other words, for spin, we see that l must

be a “half-integer.” Anyhow, the concept of spin must be assumed in quantum mechanics.

From the point of view of quantum mechanics, there is no reason why there should be spin,

the intrinsic angular momentum. However, if you learn quantum field theory, you will see

that the concept of spin comes out much more naturally.

Third, let me explain how Stern-Gerlach experiment is related to the spin of electron. As

we just mentioned, electron has spin 1/2 (i.e., l = 1/2). It means that the eigenvalues of Lz

are given by h̄/2 and −h̄/2, as we have m = 1/2 and −1/2. In Stern-Gerlach experiment, an

external magnetic field is exerted on electron, which has a magnetic moment. Recall from
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our earlier article on magnetic dipole that U = −~µ · ~B. Recall also from our earlier article

on electron magnetic moment that the spin magnetic moment is given by ~µs = −g(e/2m)~S,

where ~S is the spin angular momentum of an electron. Combining these two equations, the

Hamiltonian of the electron is given by

H = −g e

2m
~S · ~B (51)

Without loss of generality, let’s find a coordinate system in which ~B is aligned along z axis.

In other words, let’s set ~B = Bẑ. Then, the above formula becomes

H = −g e

2m
BSz (52)

where Sz is the z-component of spin angular momentum. What are the possible observed

value of the Hamiltonian above? A Hamiltonian, just like any other observable, can have

only its eigenvalue as its observed values. As Sz can be only h̄/2 and −h̄/2, we have

H = ∓g e

4m
Bh̄ (53)

Thus, it can have only two values. This is the reason why only two spots are seen on the

screen in Stern-Gerlach expperiment. Sz can indeed have only two values.

Fourth, let me comment that one uses mathematics behind the angular momentum to

derive the area spectrum in loop quantum gravity, even though the area spectrum has noth-

ing to do with the angular momentum itself.

Problem 2. Check the following. (Hint1)

〈l, m|Lx|l, m〉 = 〈l, m|Ly|l, m〉 = 0 (54)

Problem 3. Verify that the norm of the following vector is h̄
√
l(l + 1)−m(m+ 1):

L+|l, m〉 (55)

(Hint2)

Summary

• [Lx, Ly] = ih̄Lz, [Ly, Lz] = ih̄Lx, [Lz, Lx] = ih̄Ly. In other words, [Li, Lj ] = iεijkLk.

• L+ = Lx+iLy raises the eigenvalue of Lz by h̄ and L− = Lx−iLy lowers the eigenvalue

of Lz by h̄.

• L+ and L− don’t change the eigenvalues of L2 = L2
x + L2

y + L2
z.

• Lz and L2 commute. Therefore, we can diagonalize them in a common basis.

1Express Lx and Ly in terms of L+ and L−. Use also the fact that Lz is a Hermitian matrix which implies

that two vectors with different eigenvalues for Lz are orthogonal to each other.
2The solution is in the next article.
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• L2|l, m〉 = l(l + 1)h̄2|l, m〉, Lz|l, m〉 = mh̄|l, m〉.

• m can have values as −l,−l + 1, · · · , l − 1, l.

• l can be only half-integers, such as 0, 1/2, 1, 3/2, 2, 5/2 · · ·.
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