## Another example of differential equations

Four-year old Ung-yong Kim was asked to solve the following differential equation by a Japanese mathematician in a Japanese TV show.

$$
\begin{equation*}
\left(1+x^{2}\right) d y-a d x=x y d x \tag{1}
\end{equation*}
$$

Let's solve it together, partly by yourself and partly by myself. First, the above expression implies:

$$
\begin{equation*}
\frac{d y}{d x}-\frac{x}{1+x^{2}} y=\frac{a}{1+x^{2}} \tag{2}
\end{equation*}
$$

Now, let $y=e^{f} g$ where $f=f(x)$ and $g=g(x)$, and set

$$
\begin{equation*}
f^{\prime}=\frac{1}{1+x^{2}} \tag{3}
\end{equation*}
$$

Then, you will get (Problem 1. Check this!)

$$
\begin{equation*}
e^{f} g^{\prime}=\frac{a}{1+x^{2}} \tag{4}
\end{equation*}
$$

You can now use (3) to obtain $f$ and plug this into (4). Then, you get (Problem 2. Check this!)

$$
\begin{equation*}
g^{\prime}=\frac{a}{\left(1+x^{2}\right)^{3 / 2}} \tag{5}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
g=\int \frac{a d x}{\left(1+x^{2}\right)^{3 / 2}} \tag{6}
\end{equation*}
$$

You have already solved the above integration in our earlier article "Integration by substitution." Since you now know $f$ and $g$, from $y=e^{f} g$ you get $y$. The answer is following: (Problem 3. Check this!)

$$
\begin{equation*}
y=a x+c \sqrt{1+x^{2}} \tag{7}
\end{equation*}
$$

for an arbitrary $c$.

