Application of residue theorem

In this article, we will show you how we can apply residue theorem to a certain type
of integration. To this end, we will closely follow Wikipedia.

Suppose we want to calculate the following:
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Assuming t > 0 (we will consider the other case later), consider the following integral,
to this end: '
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where the contour C is drawn in Fig.1. The contour goes along the real line from —a
to a and then counter-clockwise along a semicircle from a to —a. Notice that there is a
pole when z =i and z = —i as z? + 1, the denominator of the integrand becomes zero
in such cases. As only the pole at z = i is encompassed by the contour, we only need to
consider the residue at z = ¢ when calculating the integral. We get:
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The contour consists of the straight part and the arc part. Therefore, we get:

eztz eitz .
—dz + / ——dz = me~ 4
/straight 22 +1 arc 22 +1 ( )
In other words,
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Figure 1: t > 0 Figure 2: ¢t <0



Now we will show that the arc part goes to zero in the limit a goes to infinity. To show

this, first notice the following, which is satisfied on the arc when ¢t > 1:
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where we have used sin ¢ > 0 satisfied on the arc. Then, we have:
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as the right-hand side goes to zero in the limit a goes to infinity, we conclude that the

arc part is zero in such a limit. Therefore, from (5), we obtain:
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from which we conclude:

Now, to the case when ¢ < 0. It turns out that in such a case we have to consider
the contour shown in Fig.2. (We will see why soon.) As the contour is clock-wise, we

get an extra negative sign. We get:
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Again, we can split the contour into the straight part and the arc part, and the arc part

becomes zero as well, since the following is satisfied when ¢ < 0 and sin¢ < 0

‘eitz‘ _

eit|z\(cos¢+isin¢)‘ _ ‘e—t|z\sin¢+it\z|cos¢ _ e—t|z|sin¢ <1. (11)

and (7) is satisfied. Therefore, we conclude:

e8] eitx
/ dr = me' (12)

o 2+ 1

when ¢ < 0. Using the following Heaviside step function,
O(z) =0 if z <0, O(z)y=1 ifz>0 (13)

it can be represented as:
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Problem 1. Evaluate the following. (Hint!)
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1Use the result of Problem 8 in “Euler’s formula and hyperbolic functions.”




Problem 2. Prove the following, which we will use in our later article “The Feynman

propagator of the scalar field.”
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where € is an infinitesimal, but positive number and E > 0. (Hint: Show that the pole
isat z = —F+1i€ and x = F —i€, where € is another infinitesimal, but positive number

given by ¢ = ¢/(2F). The rest is exactly same as our example in this article.)
Summary
e Sometimes, the residue theorem can be used to calculate the integration of follow-
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by turning it into a contour integral, if
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can be shown to approach zero, where “arc” is the infinite half circle (either clock-

ing form

wise or anti-clockwise or both) starting from +oco to —oc.



