Application of residue theorem

In this article, we will show you how we can apply residue theorem to a certain type of integration. To this end, we will closely follow Wikipedia.

Suppose we want to calculate the following:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x \tag{1}
\end{equation*}
$$

Assuming $t \geq 0$ (we will consider the other case later), consider the following integral, to this end:

$$
\begin{equation*}
\int_{C} \frac{e^{i t z}}{z^{2}+1} d z \tag{2}
\end{equation*}
$$

where the contour C is drawn in Fig.1. The contour goes along the real line from $-a$ to a and then counter-clockwise along a semicircle from a to $-a$. Notice that there is a pole when $z=i$ and $z=-i$ as $z^{2}+1$, the denominator of the integrand becomes zero in such cases. As only the pole at $z=i$ is encompassed by the contour, we only need to consider the residue at $z=i$ when calculating the integral. We get:

$$
\begin{equation*}
\int_{C} \frac{e^{i t z}}{z^{2}+1} d x=\int_{C} \frac{e^{i t z} /(z+i)}{z-i} d z=2 \pi i \frac{e^{-t}}{2 i}=\pi e^{-t} \tag{3}
\end{equation*}
$$

The contour consists of the straight part and the arc part. Therefore, we get:

$$
\begin{equation*}
\int_{\text {straight }} \frac{e^{i t z}}{z^{2}+1} d z+\int_{\operatorname{arc}} \frac{e^{i t z}}{z^{2}+1} d z=\pi e^{-t} \tag{4}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\int_{-a}^{a} \frac{e^{i t z}}{z^{2}+1} d z=\pi e^{-t}-\int_{\operatorname{arc}} \frac{e^{i t z}}{z^{2}+1} d z \tag{5}
\end{equation*}
$$

Figure 1: $t \geq 0$

Figure 2: $t \leq 0$

Now we will show that the arc part goes to zero in the limit a goes to infinity. To show this, first notice the following, which is satisfied on the arc when $t \geq 1$:

$$
\begin{equation*}
\left|e^{i t z}\right|=\left|e^{i t|z|(\cos \phi+i \sin \phi)}\right|=\left|e^{-t|z| \sin \phi+i t|z| \cos \phi}\right|=e^{-t|z| \sin \phi} \leq 1 \tag{6}
\end{equation*}
$$

where we have used $\sin \phi \geq 0$ satisfied on the arc. Then, we have:

$$
\begin{equation*}
\left|\int_{\operatorname{arc}} \frac{e^{i t z}}{z^{2}+1} d z\right| \leq \int_{\operatorname{arc}}\left|\frac{e^{i t z}}{z^{2}+1}\right| d z \leq \int_{\operatorname{arc}} \frac{1}{\left|z^{2}+1\right|} d z \leq \int_{\operatorname{arc}} \frac{1}{a^{2}-1} d z=\frac{\pi a}{a^{2}-1} \tag{7}
\end{equation*}
$$

as the right-hand side goes to zero in the limit a goes to infinity, we conclude that the arc part is zero in such a limit. Therefore, from (5), we obtain:

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \int_{-a}^{a} \frac{e^{i t z}}{z^{2}+1} d z=\pi e^{-t} \tag{8}
\end{equation*}
$$

from which we conclude:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x=\pi e^{-t} \tag{9}
\end{equation*}
$$

Now, to the case when $t \leq 0$. It turns out that in such a case we have to consider the contour shown in Fig.2. (We will see why soon.) As the contour is clock-wise, we get an extra negative sign. We get:

$$
\begin{equation*}
\int_{C} \frac{e^{i t z}}{z^{2}+1} d x=\int_{C} \frac{e^{i t z} /(z-i)}{z+i} d z=-2 \pi i \frac{e^{t}}{-2 i}=\pi e^{t} \tag{10}
\end{equation*}
$$

Again, we can split the contour into the straight part and the arc part, and the arc part becomes zero as well, since the following is satisfied when $t \leq 0$ and $\sin \phi \leq 0$

$$
\begin{equation*}
\left|e^{i t z}\right|=\left|e^{i t|z|(\cos \phi+i \sin \phi)}\right|=\left|e^{-t|z| \sin \phi+i t|z| \cos \phi}\right|=e^{-t|z| \sin \phi} \leq 1 \tag{11}
\end{equation*}
$$

and (7) is satisfied. Therefore, we conclude:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x=\pi e^{t} \tag{12}
\end{equation*}
$$

when $t \leq 0$. Using the following Heaviside step function,

$$
\begin{equation*}
\theta(x)=0 \text { if } x<0, \quad \theta(x)=1 \text { if } x \geq 0 \tag{13}
\end{equation*}
$$

it can be represented as:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x=\pi e^{-t} \theta(t)+\pi e^{t} \theta(-t) \tag{14}
\end{equation*}
$$

Problem 1. Evaluate the following. (Hint ${ }^{1}$)

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1} \tag{15}
\end{equation*}
$$

[^0]Problem 2. Prove the following, which we will use in our later article "The Feynman propagator of the scalar field."

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{d x}{x^{2}-E^{2}+i \epsilon} e^{i x t}=-\frac{e^{-i E t} \theta(t)+e^{i E t} \theta(-t)}{2 E} \tag{16}
\end{equation*}
$$

where ϵ is an infinitesimal, but positive number and $E>0$. (Hint: Show that the pole is at $x=-E+i \epsilon^{\prime}$ and $x=E-i \epsilon^{\prime}$, where ϵ^{\prime} is another infinitesimal, but positive number given by $\epsilon^{\prime}=\epsilon /(2 E)$. The rest is exactly same as our example in this article.)

Summary

- Sometimes, the residue theorem can be used to calculate the integration of following form

$$
\int_{-\infty}^{\infty} f(x) d x
$$

by turning it into a contour integral, if

$$
\int_{\operatorname{arc}} f(x) d x
$$

can be shown to approach zero, where "arc" is the infinite half circle (either clockwise or anti-clockwise or both) starting from $+\infty$ to $-\infty$.

[^0]: ${ }^{1}$ Use the result of Problem 8 in "Euler's formula and hyperbolic functions."

