
Application of residue theorem

In this article, we will show you how we can apply residue theorem to a certain type

of integration. To this end, we will closely follow Wikipedia.

Suppose we want to calculate the following:∫ ∞
−∞

eitx

x2 + 1
dx (1)

Assuming t ≥ 0 (we will consider the other case later), consider the following integral,

to this end: ∫
C

eitz

z2 + 1
dz (2)

where the contour C is drawn in Fig.1. The contour goes along the real line from −a
to a and then counter-clockwise along a semicircle from a to −a. Notice that there is a

pole when z = i and z = −i as z2 + 1, the denominator of the integrand becomes zero

in such cases. As only the pole at z = i is encompassed by the contour, we only need to

consider the residue at z = i when calculating the integral. We get:∫
C

eitz

z2 + 1
dx =

∫
C

eitz/(z + i)

z − i
dz = 2πi

e−t

2i
= πe−t (3)

The contour consists of the straight part and the arc part. Therefore, we get:∫
straight

eitz

z2 + 1
dz +

∫
arc

eitz

z2 + 1
dz = πe−t (4)

In other words, ∫ a

−a

eitz

z2 + 1
dz = πe−t −

∫
arc

eitz

z2 + 1
dz (5)

Figure 1: t ≥ 0 Figure 2: t ≤ 0
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Now we will show that the arc part goes to zero in the limit a goes to infinity. To show

this, first notice the following, which is satisfied on the arc when t ≥ 1:∣∣eitz∣∣ =
∣∣∣eit|z|(cosφ+i sinφ)∣∣∣ =

∣∣∣e−t|z| sinφ+it|z| cosφ∣∣∣ = e−t|z| sinφ ≤ 1. (6)

where we have used sinφ ≥ 0 satisfied on the arc. Then, we have:∣∣∣∣∫
arc

eitz

z2 + 1
dz

∣∣∣∣ ≤ ∫
arc

∣∣∣∣ eitz

z2 + 1

∣∣∣∣ dz ≤ ∫
arc

1

|z2 + 1|
dz ≤

∫
arc

1

a2 − 1
dz =

πa

a2 − 1
(7)

as the right-hand side goes to zero in the limit a goes to infinity, we conclude that the

arc part is zero in such a limit. Therefore, from (5), we obtain:

lim
a→∞

∫ a

−a

eitz

z2 + 1
dz = πe−t (8)

from which we conclude: ∫ ∞
−∞

eitx

x2 + 1
dx = πe−t (9)

Now, to the case when t ≤ 0. It turns out that in such a case we have to consider

the contour shown in Fig.2. (We will see why soon.) As the contour is clock-wise, we

get an extra negative sign. We get:

∫
C

eitz

z2 + 1
dx =

∫
C

eitz/(z − i)
z + i

dz = −2πi
et

−2i
= πet (10)

Again, we can split the contour into the straight part and the arc part, and the arc part

becomes zero as well, since the following is satisfied when t ≤ 0 and sinφ ≤ 0∣∣eitz∣∣ =
∣∣∣eit|z|(cosφ+i sinφ)∣∣∣ =

∣∣∣e−t|z| sinφ+it|z| cosφ∣∣∣ = e−t|z| sinφ ≤ 1. (11)

and (7) is satisfied. Therefore, we conclude:∫ ∞
−∞

eitx

x2 + 1
dx = πet (12)

when t ≤ 0. Using the following Heaviside step function,

θ(x) = 0 if x < 0, θ(x) = 1 if x ≥ 0 (13)

it can be represented as: ∫ ∞
−∞

eitx

x2 + 1
dx = πe−tθ(t) + πetθ(−t) (14)

Problem 1. Evaluate the following. (Hint1)∫ ∞
−∞

dx

x4 + 1
(15)

1Use the result of Problem 8 in “Euler’s formula and hyperbolic functions.”
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Problem 2. Prove the following, which we will use in our later article “The Feynman

propagator of the scalar field.”

1

2πi

∫ ∞
−∞

dx

x2 − E2 + iε
eixt = −e

−iEtθ(t) + eiEtθ(−t)
2E

(16)

where ε is an infinitesimal, but positive number and E > 0. (Hint: Show that the pole

is at x = −E+ iε′ and x = E− iε′, where ε′ is another infinitesimal, but positive number

given by ε′ = ε/(2E). The rest is exactly same as our example in this article.)

Summary

• Sometimes, the residue theorem can be used to calculate the integration of follow-

ing form ∫ ∞
−∞

f(x)dx

by turning it into a contour integral, if∫
arc
f(x)dx

can be shown to approach zero, where “arc” is the infinite half circle (either clock-

wise or anti-clockwise or both) starting from +∞ to −∞.
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