
Area operator in terms of newer variables and dreibein

1 Area operator expressed in terms of metric

In this article, we will show how the area operator, which plays a key role in loop quantum

gravity, can be expressed in terms of the metric. In particular, we will express it in terms of

newer variables by using a hand-waving argument. Then we will express the area operator

in terms of “dreibein” which we show by somewhat hand-waving argument again. (Drei is

“three” in German, just as “Vier” in Vierbein is “four.”) Then we will derive the expression

for the area operator in terms of newer variables again, this time, rigorously.

Our convention in this article is as follows: we use i, j, k for Lorentz indices and a, b, c,

d, e, f for space indices. We denote the Levi-Civita symbol using tilde as in ε̃123 ≡ 1, while

the Levi-Civita tensor is written without tilde as in ε123 ≡
√
g.

The length of a curve in Euclidean space is given as follows:

L =

∫ √
dx2 + dy2 + dz2 (1)

Similarly, the area of a surface in Euclidean space is given as follows:

A =

∫ √
(dx ∧ dy)2 + (dy ∧ dz)2 + (dz ∧ dx)2 (2)

We will not prove this formula but merely hope that the reader finds it reasonable; when the

surface concerned lies on the x-y plane, it reduces to A =
∫
dx ∧ dy (and similarly for the

cases of the y-z and z-x planes). If the reader doesn’t find this expression reasonable, he or

she can rely on the rigorous treatment at the end of this article.

Now let’s define:

E1 = dy ∧ dz, E2 = dz ∧ dx, E3 = dx ∧ dy (3)

Then it is easy to see the following:

A =

∫
(E1)2 + (E2)2 + (E3)2 =

∫ ∑
i

EiEi (4)

Given these definitions, let’s introduce primed coordinate as follows, for which the metric is

diagonal and constant

dx =
√
g11dx

′, dy =
√
g22dy

′, dz =
√
g33dz

′ (5)
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Then, we have:

E1 =

√
g

√
g11

dy′ ∧ dz′, E2 =

√
g

√
g22

dz′ ∧ dx′, E3 =

√
g

√
g33

dx′ ∧ dy′ (6)

Therefore, if we write:

Ei =
1

2
Diaεabcdx

′b ∧ dx′c (7)

where εabc is the Levi-Civita tensor defined by ε123 =
√
g, we have:

D11D11 =
1

g11
= g11 (8)

and similarly for D22 and D33. One can also show that in our case, Dia is diagonal. Therefore,

we can conclude: ∑
i

DiaDib = gab (9)

Now, to dreibein. We use the following notation:

ei = eiadx
a (10)

where the Einstein summation convention is used. Notice that dreibeins are invariant under

the change of coordinates in (5), since eia transforms as a co-vector, while dxa transforms

as a vector. (Remember that the product of vector and co-vector must be a scalar, which

doesn’t depend on the choice of coordinate.) This should indeed be true for any coordinate

transformation since ei is a scalar as far as space indices are concerned, as space indices are

absent.

Given this, notice that the following is true for Euclidean space:

E1 = e2 ∧ e3, E2 = e3 ∧ e1, E3 = e1 ∧ e2 (11)

Since Es don’t depend on the choice of coordinate, as es don’t, it should be reasonable that

the above formula is correct, if the space concerned is Euclidean space. However, it turns out

that it is true for any space. This is especially reasonable when you remember that e1∧e2∧e3

is the invariant volume form regardless of any coordinate choice.

Finally, we show the rigorous derivation. To this end, recall that volume is given as

follows:

V =

∫
d3x
√

det g (12)

In our case, what we need is not volume, but area, which is two-dimensional. Let’s say

that τ and σ are the two-dimensional coordinates that parametrize the area, and let’s use

Greek indices α and β to denote them. In other words, α = 0 is τ and α = 1 is σ. Then, the

analogous equation to (12) is:

A =

∫
dτdσ

√
detGαβ (13)
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Now, let’s calculate the metric Gαβ . The line element in 3-d space must match with the

line element in τ and σ variables. This implies:

ds2 = gabdx
adxb = gab

∂xa

∂α

∂xb

∂β
dαdβ = Gαβdαdβ (14)

which implies:

Gαβ =
∂xa

∂α

∂xa
∂β

(15)

Therefore, (13) can be re-written as:

A =

∫
dτdσ

√
det

[
∂xa

∂α

∂xa
∂β

]
(16)

=

∫
dτdσ

(
det

[
∂xa

∂τ
∂xa

∂τ
∂xd

∂τ
∂xd

∂σ
∂xc

∂σ
∂xc

∂τ
∂xb

∂σ
∂xb

∂σ

])1/2

(17)

which means:

A =

∫ [
∂xa

∂τ

∂xb

∂σ

∂xc

∂τ

∂xd

∂σ
(gacgbd − gadgbc)

]1/2
dτdσ (18)

This equation implies:

A =

∫ [
∂xa

∂τ

∂xb

∂σ

∂xc

∂τ

∂xd

∂σ
(εeabεfcdg

ef )

]1/2
dτdσ (19)

Now, using (7), (4) can be re-expressed as follows:

A =

∫ [∑
i

(
1

2
Deiεeabdx

adxb)(
1

2
Dfiεfcddx

cdxd)

]1/2

=

∫ [∑
i

Deiεeab
∂xa

∂τ

∂xb

∂σ
dτdσDfiεfcd

∂xc

∂τ

∂xd

∂σ
dτdσ

]1/2
(20)

Comparing this formula with (19), we conclude (9).

2 “New” gravitational electric field as area operator

In 1993, Rovelli asserted that, if the area two form is given by

Ei(x) = Eia(x)ε̃abcdx
b ∧ dxc (21)

then the norm of Eia gives the area spectrum. Here Eia is called the “gravitational electric

field” and is defined by:

ggab =
∑
i

EiaEib (22)

However, Rovelli’s derivation was wrong. The formula he meant to work with is:

Ei(x) =
1

2
Eia(x)ε̃abcdx

b ∧ dxc (23)
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but he used the following incorrect relation:∫
εeabdx

a ∧ dxb =

∫
εeab

∂xa

∂σ

∂xb

∂τ
dσdτ (24)

Let’s check this! Suppose e = 1, x2 = σ, x3 = τ . The left-hand side becomes∫
ε123dx

2 ∧ dx3 + ε132dx
3 ∧ dx2 =

∫
2dx2 ∧ dx3 (25)

while the right-hand side becomes∫
(ε123

∂σ

∂σ

∂τ

∂τ
+ ε132

∂τ

∂σ

∂σ

∂τ
)dσdτ =

∫
dσdτ =

∫
dx2dx3 (26)

They are not equal. We conclude:∫
εeab

∂xa

∂σ

∂xb

∂τ
dσdτ =

∫
1

2
εeabdx

a ∧ dxb (27)

Actually, (23) is not correct. Remember that you raise and lower space indices by gab

and gab and you raise and lower Lorentz indices with ηij and ηij . In (23), one should use

the Levi-Civita tensor ε123 ≡
√
g because a, b, c are not Lorentz indices but space indices.

Therefore, it is not appropriate to use Eia(x) in (23). For example, in string theory, the

action of a string in the presence of background fields is given as follows:

S =
1

4πα′

∫
d2σ
√
g[(gabGµν(X) + iεabBµν(X))∂aX

µ∂bX
ν + α′RΦ(X)] (28)

where εab is not a Levi-Civita symbol but a Levi-Civita tensor.

Another way of seeing that it is reasonable to use the Levi-Civita tensor is that the

formula for the hodge dual always includes
√
g (i.e. the Levi-Civita tensor) as follows:

(dxa)∗ =
1

2!
εabcdx

b ∧ dxc (29)

Therefore, we suggest:

Ei(x) =
1

2
Dia(x)εabcdx

b ∧ dxc (30)

In the last section, we have shown the following must be satisfied:

gab =
∑
i

DiaDib (31)

This suggests that D should be dreibein: Dia = eia. In conclusion, we have:

Ei(x) =
1

2
eia(x)εabcdx

b ∧ dxc (32)

To obtain a theory that uses this “new” gravitational electric field instead of the tradi-

tional gravitational electric field (i.e. Ashtekar variables), we will introduce “newer” variables

in the next article.

Summary

• An area element can be written as

Ei(x) =
1

2
eia(x)εabcdx

b ∧ dxc

where εabc is a Levi-Civita tensor.
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