Cauchy-Riemann equations
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Consider a function “f” from a complex number “z = x + iy” to a complex number
“u + 1" as follows:
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where x, y, u, and v are real. Given this, suppose you want to differentiate this function.

Recalling the definition of differentiation, we have:
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If this limit exists, it implies that we get the same value for the above expression
no matter in which direction h approaches 0. If A approaches 0 along the real axis, we
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If h approaches 0 along the imaginary axis, we have:
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Since both are equal we have:
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Plugging (1), the above becomes:
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Therefore, we conclude:
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These are called “Cauchy-Riemann equations.” We will see their power in the next
article.
Let me recap. If a function f(z) has a well-defined limit for f’(a) we say the function
f(2) is “complex differentiable” (also called “analytic” or “holomorphic”) at a. Then,

it satisfies Cauchy-Riemann equations at z = a.



Now, let’s investigate what kind of functions are holomorphic. First, f(z = = + iy)
can be understood as f(z,y). Considering the following,
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x and y are functions of z and z*. As f is a function of x and y, f can be interpreted as

a function of z and z*, treated independently. Now, we introduce the following notation:
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These are defined, so that the followings are satisfied:
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Problem 1. Check that a function f(z,2*) = u + iv is holomorphic (i.e. it satisfies

Cauchy-Riemann equation), if following is satisfied:
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Therefore, a holomorphic depends only on z and not on z*. In addition to this condition,
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if the function is ordinarily differentiable (i.e. the usual one as opposed to the complex
one), it’s holomorphic. For example, z? + zz* is not holomorphic as it depends on z*.
(i.e. z* appears in the function.) z2 + 22 is holomorphic since it doesn’t depend on z*.
1/z is holomorphic except for the point z = 0 where it’s not ordinarily differentiable.

As an aside, a function is called anti-holomorphic, if it satisfies:
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In such a case z doesn’t appear in f and f is a function of z* only. The concept of
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holomorphicity and anti-holomorphicity plays a crucial role in string theory.
Summary

e A complex valued function f is called “complexly differentiable,” if the following
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exists. i.e., no matter which direction you approach the limit h — 0, the answer

is unique.
e The complex differentiability implies Cauchy-Riemann equations.

e A complexly differentiable function is also called “holomorphic function.” A holo-
morphic function can be expressed only in terms of z without z*. i.e., it satisfies
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