Cauchy-Riemann equations

Consider a function " f " from a complex number " $z=x+i y$ " to a complex number " $u+i v$ " as follows:

$$
\begin{equation*}
f(x+i y)=u+i v \tag{1}
\end{equation*}
$$

where x, y, u, and v are real. Given this, suppose you want to differentiate this function. Recalling the definition of differentiation, we have:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=f^{\prime}(z) \tag{2}
\end{equation*}
$$

If this limit exists, it implies that we get the same value for the above expression no matter in which direction h approaches 0 . If h approaches 0 along the real axis, we have:

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{f(z+x)-f(z)}{x}=\frac{\partial f}{\partial x} \tag{3}
\end{equation*}
$$

If h approaches 0 along the imaginary axis, we have:

$$
\begin{equation*}
\lim _{y \rightarrow 0} \frac{f(z+i y)-f(z)}{i y}=\frac{1}{i} \frac{\partial f}{\partial y} \tag{4}
\end{equation*}
$$

Since both are equal we have:

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{1}{i} \frac{\partial f}{\partial y} \tag{5}
\end{equation*}
$$

Plugging (1), the above becomes:

$$
\begin{align*}
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} & =\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \tag{6}\\
& =\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} \tag{7}
\end{align*}
$$

Therefore, we conclude:

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \tag{8}
\end{equation*}
$$

These are called "Cauchy-Riemann equations." We will see their power in the next article.

Let me recap. If a function $f(z)$ has a well-defined limit for $f^{\prime}(a)$ we say the function $f(z)$ is "complex differentiable" (also called "analytic" or "holomorphic") at a. Then, it satisfies Cauchy-Riemann equations at $z=a$.

Now, let's investigate what kind of functions are holomorphic. First, $f(z=x+i y)$ can be understood as $f(x, y)$. Considering the following,

$$
\begin{equation*}
x=\frac{z+z^{*}}{2}, \quad y=\frac{z-z^{*}}{2 i} \tag{9}
\end{equation*}
$$

x and y are functions of z and z^{*}. As f is a function of x and y, f can be interpreted as a function of z and z^{*}, treated independently. Now, we introduce the following notation:

$$
\begin{equation*}
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial z^{*}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \tag{10}
\end{equation*}
$$

These are defined, so that the followings are satisfied:

$$
\begin{equation*}
\frac{\partial z}{\partial z}=\frac{\partial z^{*}}{\partial z^{*}}=1, \quad \frac{\partial z^{*}}{\partial z}=\frac{\partial z}{\partial z^{*}}=0 \tag{11}
\end{equation*}
$$

Problem 1. Check that a function $f\left(z, z^{*}\right)=u+i v$ is holomorphic (i.e. it satisfies Cauchy-Riemann equation), if following is satisfied:

$$
\begin{equation*}
\frac{\partial f}{\partial z^{*}}=0 \tag{12}
\end{equation*}
$$

Therefore, a holomorphic depends only on z and not on z^{*}. In addition to this condition, if the function is ordinarily differentiable (i.e. the usual one as opposed to the complex one), it's holomorphic. For example, $z^{2}+z z^{*}$ is not holomorphic as it depends on z^{*}. (i.e. z^{*} appears in the function.) $z^{2}+z^{3}$ is holomorphic since it doesn't depend on z^{*}. $1 / z$ is holomorphic except for the point $z=0$ where it's not ordinarily differentiable.

As an aside, a function is called anti-holomorphic, if it satisfies:

$$
\begin{equation*}
\frac{\partial f}{\partial z}=0 \tag{13}
\end{equation*}
$$

In such a case z doesn't appear in f and f is a function of z^{*} only. The concept of holomorphicity and anti-holomorphicity plays a crucial role in string theory.

Summary

- A complex valued function f is called "complexly differentiable," if the following limit

$$
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}=f^{\prime}(z)
$$

exists. i.e., no matter which direction you approach the limit $h \rightarrow 0$, the answer is unique.

- The complex differentiability implies Cauchy-Riemann equations.
- A complexly differentiable function is also called "holomorphic function." A holomorphic function can be expressed only in terms of z without z^{*}. i.e., it satisfies

$$
\frac{\partial f}{\partial z^{*}}=0
$$

