
The chemical equilibrium

Suppose you have the following reaction:

A+B ↔ C +D (1)

We have two arrows, because the reaction can happen in two ways. However, if you wait

long enough, at a certain point, the reaction rate for A+B → C +D and the reaction rate

for A + B ← C +D will be closer and closer together, so the number densities of A, B, C

and D will converge to certain values. Then, we can say that they reached “equilibrium.” In

this article, we will find a formula that these number densities satisfy.

In the last article, we have seen that the chemical potential is conserved in the equilibrium,

i.e.

µA + µB = µC + µD (2)

If we now express the number density in terms of the chemical potential, temperature

and other relevant quantities, our job is done. Earlier, we learned that the Bose-Einstein dis-

tribution and the Fermi-Dirac distribution can be approximated as the Maxwell-Boltzmann

distribution in the limit (e(ϵ−µ)/kT ≫ 1). This is the case of our interest, so we have
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where i can be A, B, C, D. Using
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p2

2m
(4)

where Ei is whateever the energy the particle i has when p = 0, we get
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(Problem 1. Show this!)

We also know that the reaction (1) can produce energy. Let’s denote the energy change

upon reaction A+B → C +D by

∆E = EC + ED − EA − EB (6)

Then, (2) implies
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e−∆E/kT (7)

Problem 2. Repeat the above calculation for 2A+B ↔ C
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Summary

� The number density of particles during chemical equilibrium can be derived from the

Maxwell-Boltzmann distribution and the conservation of chemical potential. The final

result has a factor e−∆E/kT where ∆E is the energy change during the reaction.
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