The chemical equilibrium

Suppose you have the following reaction:

$$
\begin{equation*}
A+B \leftrightarrow C+D \tag{1}
\end{equation*}
$$

We have two arrows, because the reaction can happen in two ways. However, if you wait long enough, at a certain point, the reaction rate for $A+B \rightarrow C+D$ and the reaction rate for $A+B \leftarrow C+D$ will be closer and closer together, so the number densities of A, B, C and D will converge to certain values. Then, we can say that they reached "equilibrium." In this article, we will find a formula that these number densities satisfy.

In the last article, we have seen that the chemical potential is conserved in the equilibrium, i.e.

$$
\begin{equation*}
\mu_{A}+\mu_{B}=\mu_{C}+\mu_{D} \tag{2}
\end{equation*}
$$

If we now express the number density in terms of the chemical potential, temperature and other relevant quantities, our job is done. Earlier, we learned that the Bose-Einstein distribution and the Fermi-Dirac distribution can be approximated as the Maxwell-Boltzmann distribution in the limit $\left(e^{(\epsilon-\mu) / k T} \gg 1\right)$. This is the case of our interest, so we have

$$
\begin{equation*}
N_{i}=\frac{1}{h^{3}} \int \frac{d^{3} p d^{3} q}{e^{\left(\epsilon-\mu_{i}\right) / k T}} \tag{3}
\end{equation*}
$$

where i can be A, B, C, D. Using

$$
\begin{equation*}
\epsilon=E_{i}+\frac{p^{2}}{2 m} \tag{4}
\end{equation*}
$$

where E_{i} is whateever the energy the particle i has when $p=0$, we get

$$
\begin{equation*}
n_{i} \equiv \frac{N_{i}}{V}=\left(\frac{m_{i} k T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{\left(-E_{i}+\mu_{i}\right) / k T} \tag{5}
\end{equation*}
$$

(Problem 1. Show this!)
We also know that the reaction (1) can produce energy. Let's denote the energy change upon reaction $A+B \rightarrow C+D$ by

$$
\begin{equation*}
\Delta E=E_{C}+E_{D}-E_{A}-E_{B} \tag{6}
\end{equation*}
$$

Then, (2) implies

$$
\begin{equation*}
\frac{n_{C} n_{D}}{n_{A} n_{B}}=\left(\frac{m_{C} m_{D}}{m_{A} m_{B}}\right)^{3 / 2} e^{-\Delta E / k T} \tag{7}
\end{equation*}
$$

Problem 2. Repeat the above calculation for $2 A+B \leftrightarrow C$

Summary

- The number density of particles during chemical equilibrium can be derived from the Maxwell-Boltzmann distribution and the conservation of chemical potential. The final result has a factor $e^{-\Delta E / k T}$ where ΔE is the energy change during the reaction.

