
Conic sections in Cartesian coordinate

As advertised in our earlier article “Conic sections and Newton’s law of gravity,” in this

article we will prove the equivalence of two different definitions of ellipse, namely, one as

a “squeezed circle” and another through foci. To this end, see Fig. 1. Let’s say that the

coordinate of two foci are given by (−f, 0) and (f, 0). Then, the sum of the distances to each

focus is constant for an ellipse. What is this sum for our ellipse? (a, 0) is a point on the

ellipse. The distance to the first focus F1 is a + f . The distance to the second focus F2 is

a− f . Therefore, their sum is 2a. Now, we can write the equation for the ellipse. If (x, y) is

a point on ellipse the distance to the first focus is given by
√

(x+ f)2 + y2 and the distance

to the second focus is given by
√

(x− f)2 + y2. Therefore, we have:√
(x+ f)2 + y2 +

√
(x− f)2 + y2 = 2a (1)

This is the equation for the ellipse. Now, let’s simplify it.√
(x+ f)2 + y2 = 2a−

√
(x− f)2 + y2 (2)

(x+ f)2 + y2 = 4a2 − 4a
√

(x− f)2 + y2 + (x− f)2 + y2

4a
√

(x− f)2 + y2 = 4a2 − 4xf

a
√

(x− f)2 + y2 = a2 − fx

a2(x− f)2 + a2y2 = a4 − 2a2fx+ f2x2

a2x2 − 2a2fx+ a2f2 + a2y2 = a4 − 2a2fx+ f2x2

(a2 − f2)x2 + a2y2 = a4 − a2f2 (3)

(
x

a
)2 + (

y

b
)2 = 1 (4)

where in the last step we defined b =
√
a2 − f2. The above equation shows that ellipse is a

Figure 1: ellipse Figure 2: parabola
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squeezed circle. A circle with radius a is given by the following equation:

(
x

a
)2 + (

y

a
)2 = 1 (5)

If we squeeze this circle by the ratio a/b (i.e. rescale y by the ratio b/a), we have:

(
x

a
)2 + (

y × a
b

a
)2 = 1 (6)

which is precisely (4). This completes the proof. Also, this picture suggests how we could

obtain the area of ellipse. Our circle has area πa2. Since our ellipse is squeezed by ratio

a/b, the area must be given by πa2/a
b = πab. This turns out to be correct, even though our

derivation was by no means rigorous.

Now, having obtained a Cartesian coordinate expression for ellipse let’s obtain one for

parabola as well. See Fig.2. Let’s say that the focus is at (0, f) and directrix is given by

y = −f . Then, we have: √
x2 + (y − f)2 = y + f (7)

Simplifying it, we obtain:

x2 = 4fy (8)

Finally, let’s obtain a Cartesian coordinate expression for hyperbola. If the focus is at

(−f, 0) and (f, 0). Then, we can write:√
(x+ f)2 + y2 +

√
(x− f)2 + y2 = ±2a (9)

Taking the similar step to the one that led to (3) one obtains:

(a2 − f2)x2 + a2y2 = a4 − a2f2 (10)

(
x

a
)2 − (

y

b
)2 = 1 (11)

where this time we have b =
√
f2 − a2.

Therefore, we obtained Cartesian coordinate expressions for conic sections, albeit only in

the cases in which the foci are on x-axis or y-axis. In general cases, the conic section can be

always expressed in the following form.

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 with A,B,C not all zero (12)

This sounds reasonable, since (3), (8) and (10) are in this form. In our examples, Bs were

always zero, but it’s just because the foci are simultaneously on x-axis.

Even though we will not prove here, circle or ellipse corresponds to the case B2 − 4AC

is negative, parabola corresponds to the case B2 − 4AC is zero, and hyperbola B2 − 4AC is

positive. If this reminds you one of the formulas you memorized in middle school, you are

correct. The number of solutions to a quadratic equation ax2 + bx + c = 0 depends on the

sign of b2 − 4ac. Behind the criteria for which one of conic sections an equation corresponds

to, the formula for the criteria for how many solutions are there to a quadratic equation is

hidden there. Both of them are derived from the same principle.
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Summary

• Conic sections can be analyzed in the Cartesian coordinate system.

• Conic sections are in the form of

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 with A,B,C not all zero
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