
Coupled harmonic oscillator system

You already know how to obtain the solution to the equation of motion when there is one

spring and one object. However, what you do not know yet is how to obtain the equation

of motion when there are multiple springs and multiple objects. For example, see Fig.1. We

have three springs with each spring constant k and two objects with each mass m. What

will be the equation of motion? Let’s choose the coordinates in such a way that the positions

x1 = x2 = 0 are at equilibrium. Denoting d2x
dt2 by ẍ, we have:

mẍ1 = −kx1 + k(x2 − x1) (1)

mẍ2 = −kx2 + k(x1 − x2) (2)

We have to solve these equations, but we do not know yet how. But, we can try. From the

symmetry of configurations, (i.e. all the springs have the same spring constant and all the

objects have the same mass) we try summing (1) and (2). Then, we get:

m
d2(x1 + x2)

dt2
= −k(x1 + x2) (3)

Therefore, we have

x1 + x2 = 2A sin(ωAt+ θA) (4)

where ωA =
√
k/m, and the coefficient 2 in front of A is for future convenience.

Now, let’s try subtracting (2) from (1). We have:

m
d2(x1 − x2)

dt2
= −3k(x1 − x2) (5)

Therefore, we have

x1 − x2 = 2B sin(ωBt+ θB) (6)

where ωB =
√

3k/m, and the coefficient 2 in front of B is again for future convenience.

Figure 1: 2 objects and 3 springs

1



Now, from (4) and (6), we can obtain:

x1 = A sin(ωAt+ θA) +B sin(ωBt+ θB) (7)

x2 = A sin(ωAt+ θA) −B sin(ωBt+ θB) (8)

Now, let’s interpret these equations. We have two oscillating modes present in the above

equations. The first one is given in terms of ωA and the second one ωB . From the coefficients

(i.e. A and A), the first one corresponds to x1 = x2. Similarly, from the coefficients (i.e. B

and −B) the second one corresponds to x2 = −x1.

Let’s closely look at them again. For the first case, the position difference between the

two objects is constant; the middle spring is neither compressed nor stretched, and can be

regarded as not existing in this mode. Plugging x2 = x1 to (1) and x1 = x2 to (2), we get:

mẍ1 = −kx1 (9)

mẍ2 = −kx2 (10)

Solving the above equations, with the condition x1 = x2, we have

x1 = A sin(ωAt+ θA) (11)

x2 = A sin(ωAt+ θA) (12)

where ωA =
√
k/m. Notice that they are oscillating with the same frequency. Otherwise,

x1 = x2 cannot be satisfied.

For the second case, plugging x2 = −x1 to (1) and plugging x1 = −x2 to (2) yields:

mẍ1 = −3kx1 (13)

mẍ2 = −3kx2 (14)

Solving the above equations, with the condition x2 = −x1, we have:

x1 = B sin(ωBt+ θB) (15)

x2 = −B sin(ωBt+ θB) (16)

where ωB =
√

3k/m. Notice that they are oscillating with the same frequency. Otherwise,

x2 = −x1 cannot be satisfied.

Now, we can once again check that the general solutions (7) and (8) are the sum of (11)

and (15), and the sum of (12) and (16).

Now, think about how we could solve this problem without making guesses such as x1+x2

and x1 − x2. What we have just done is finding modes in which x1 and x2 oscillate together

with the same frequency. Then, the general solution is given by the sum of these modes. To

find the frequency, let’s write:

x1 = C1 sin(ωt+ θ) (17)

x2 = C2 sin(ωt+ θ) (18)
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Figure 2: 2 objects and 2 springs
Figure 3: 3 objects and 2 springs

Figure 4: 2 objects, 2 pendulums and 2 springs

Then, we have:

ẍ1 = −ω2x1 (19)

ẍ2 = −ω2x2 (20)

We can plug them into (1) and (2). Then, we have:

(mω2 − 2k)x1 + kx2 = 0 (21)

kx1 + (mω2 − 2k)x2 = 0 (22)

Notice that this is a system of linear equations. If you choose an ω which is not quite special,

the solution to the above equation would be x1 = x2 = 0 as the ratio (mω2 − 2k) to k would

not be equal to the ratio k to (mω2 − 2k) and this solution would be meaningless as the

objects not oscillating at all is really meaningless. To have a non-zero solution, we must have∣∣∣∣∣ (mω2 − 2k) k

k (mω2 − 2k)

∣∣∣∣∣ = 0 (23)

In other words, we are solving:

x2
x1

= −mω
2 − 2k

k
= − k

mω2 − 2k
(24)

This is a quadratic equation and if you solve this, you will get mω2 = k, 3k. Plugging

mω2 = k to (21) and (22), you get x1 = x2. Plugging mω2 = 3k to (21) and (22), we get

x1 = −x2.

I learned this method at Korean Physics Olympiad camp when I was in middle school.

Then, I didn’t know why there are non-zero solutions when the determinant is zero as the

teacher there didn’t explain it, but I learned it just as a trick, and I accepted it.

Problem 1. Show that (23) is actually an eigenvalue problem.
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Problem 2. See Fig. 2. Write down the equation of motion and obtain a general solution

to it.

Problem 3. See Fig. 3. Write down the equation of motion and obtain a general solution

to it.

Problem 4. See Fig. 4. For small oscillations, write down the equation of motion and

obtain a general solution to it.

Summary

• When more than one object is connected to one another through springs, we can find

their general equations of motion by solving an eigenvalue problem in linear algebra.

• In particular, we first need to find the eigenmodes, the certain linear combinations of

the positions of objects, which behave like a simple harmonic oscillator.

• After finding the eigenmodes, we need to re-express the positions of objects in terms

of the linear combination of the eigenmodes. Then, we are done.
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