Cyclic group, C_{n}

In this article, we will explore a type of group called "cyclic group." As a prerequisite, we need to learn a new type of number: Integers modulo n.

Remember what we learned in our earlier article "Equivalence relation." If we consider integers modulo 3 , there are only three equivalence classes: [0], [1], [2]. Let's denote each element of this class by $\overline{0}_{3}, \overline{1}_{3}, \overline{2}_{3}$. Then, we have the following addition rules.

$$
\begin{array}{lll}
\overline{0}_{3}+\overline{0}_{3}=\overline{0}_{3}, & \overline{0}_{3}+\overline{1}_{3}=\overline{1}_{3}, & \overline{0}_{3}+\overline{2}_{3}=\overline{2}_{3} \\
\overline{1}_{3}+\overline{0}_{3}=\overline{1}_{3}, & \overline{1}_{3}+\overline{1}_{3}=\overline{2}_{3}, & \overline{1}_{3}+\overline{2}_{3}=\overline{0}_{3} \\
\overline{2}_{3}+\overline{0}_{3}=\overline{2}_{3}, & \overline{2}_{3}+\overline{1}_{3}=\overline{0}_{3}, & \overline{2}_{3}+\overline{2}_{3}=\overline{1}_{3} \tag{3}
\end{array}
$$

It is easy to check that

$$
\begin{equation*}
\left\{\overline{0}_{3}, \overline{1}_{3}, \overline{2}_{3}\right\} \tag{4}
\end{equation*}
$$

with " + " as the group multiplication form a group. This group is called "cyclic group" of order 3, and is denoted as " C_{3}."

Problem 1. What is the identity element of this group?
Problem 2. What is the inverse element of $\overline{1}_{3}$?
Problem 3. Is C_{3} Abelian or non-Abelian?
Another way of looking at the cyclic group is regarding it as rotation. Consider the following group of order 3 .

$$
\begin{equation*}
\left\{e, c_{120}, c_{240}\right\} \tag{5}
\end{equation*}
$$

where e is the identity element (i.e. no rotation), c_{120} is a clockwise rotation of 120°, and c_{240} is a clockwise rotation of 240°. Then, for example,

$$
\begin{equation*}
c_{240} \bullet c_{120}=e \tag{6}
\end{equation*}
$$

means that, if you rotate an object by clockwise direction in 120° followed by another clockwise rotation of 240°, the object comes to the original point, as it is rotated by 360°.

Given this, it is very easy to find a one-to-one correspondence between this group and C_{3}. The correspondence is following:

$$
\begin{equation*}
\overline{0}_{3} \leftrightarrow e, \quad \overline{1}_{3} \leftrightarrow c_{120}, \quad \overline{2}_{3} \leftrightarrow c_{240} \tag{7}
\end{equation*}
$$

Two groups can be regarded as the same group, if there is a one-to-one correspondence between the two groups, and this correspondence preserves the group multiplication. Let me clarify what I mean here. Suppose we have

$$
\begin{equation*}
a \bullet b=c \tag{8}
\end{equation*}
$$

where a, b, c, and d are some elements of group G_{1}. Suppose you found the following one to one correspondence between group G_{1} and group G_{2}, whose elements include A, B, C and D.

$$
\begin{equation*}
a \leftrightarrow A, \quad b \leftrightarrow B, \quad c \leftrightarrow C, \quad d \leftrightarrow D \tag{9}
\end{equation*}
$$

Then, if this one-to-one correspondence preserves the group multiplication, the following group multiplication must be satisfied

$$
\begin{equation*}
A \bullet B=C \tag{10}
\end{equation*}
$$

because C corresponds to c, which is $a \bullet b$. If $A \bullet B=D$ were satisfied instead of (10), group G_{2} and G_{1} can not be regarded as the same group, even though they have the same order. In our case, C_{3} and (5) have one-to-one correspondence, which preserves the group multiplication. For example, (6) corresponds to

$$
\begin{equation*}
\overline{2}_{3}+\overline{1}_{3}=\overline{0}_{3} \tag{11}
\end{equation*}
$$

Therefore, (5) is the same group as C_{3}.
Still another way of looking at C_{3} is the following:

$$
\begin{equation*}
C_{3}=\left\{e, a, a^{2} ; a^{3}=e\right\} \tag{12}
\end{equation*}
$$

where the expression after semicolon denotes the additional condition ($a^{3}=e$) we impose. This additional condition determines the group multiplication. For example, if we multiply a^{2} and a^{2}, we get

$$
\begin{equation*}
a^{2} \bullet a^{2}=a a a a=a^{3} a=e a=a \tag{13}
\end{equation*}
$$

If $\overline{1}_{3}$ corresponds to a, this multiplication corresponds to $\overline{2}_{3}+\overline{2}_{3}=\overline{1}_{3}$. You can also think of a as a clockwise rotation of $120^{\circ} . a^{3}$ is the identity because it corresponds to 360° rotation.

I leave what cyclic groups of other orders look like as an imagination to the readers.
Problem 4. Consider C_{5}, i.e.,

$$
\begin{equation*}
\left\{\overline{0}_{5}, \overline{1}_{5}, \overline{2}_{5}, \overline{3}_{5}, \overline{4}_{5}\right\} \tag{14}
\end{equation*}
$$

with " + " as group multiplication. What is the inverse element of $\overline{3}_{5}$?
Problem 5. If you regard C_{5} as rotation, how much degrees of rotation does $\overline{1}_{5}$ correspond to? (There are several possible answers, but just find one. Of course, if you want to challenge yourself, you can find all the answers.)

Summary

- Cyclic group C_{n} is defined by addition of integer modulo n.
- It can also be expressed as

$$
C_{n}=\left\{e, a, a^{2}, \cdots, a^{n-1} ; a^{n}=e\right\}
$$

