
De Rham cohomology

In an earlier article, I introduced differential forms. In this article, I will explain how it

is related to topology.

Let me introduce closed forms and exact forms. A closed form w is a form such that

dw = 0 (1)

An exact form w is a form such that

w = df (2)

for some f .

As d2 = 0, we have

d2f = d(df) = dw = 0 (3)

This result implies that an exact form is always a closed form but not vice versa. De

Rham cohomology tells us how many more closed forms there are than exact forms. The

number depends on the topology of the background where these differential forms are defined.

To understand this, let’s consider a torus. See Fig. 1.

Figure 1: Coordinates θ1 and θ2

As a torus is two-dimensional, we can assign two periodic coordinates to specify any point

on it (When we say a torus in mathematics, we mean the surface of the torus, not the interior

which is called a “toroid.” Therefore, it’s two-dimensional rather than three-dimensional).

Let’s denote these coordinates as θ1 and θ2 and say that each of them ranges from 0 to 2π.

Of course the point θ1 is the same point as θ1 + 2π, and similarly for θ2. Given this, what

would be the one-forms on this torus? Naturally, we can write a one-form w as following:

w = f(θ1, θ2)dθ1 + g(θ1, θ2)dθ2 (4)
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In this case, there are two bases for the one-form: dθ1 and dθ2.

These one-forms are closed. Now let’s see whether they are exact. If they are exact, we

can write:

dθ1 = d(α1) (5)

dθ2 = d(α2) (6)

for some α1 and α2. Notice that dθ1 doesn’t necessarily mean d(θ1), even though this notation

may be confusing. This confusion should be cleared up as you read further into this article.

Figure 2: A,A′, B,C

Now, let’s integrate each of the one-forms on the circles A and B which are shown in Fig.

2, assuming they are exact, and see what happens. Using Stokes’ theorem, we can write:∫ 2π

0

dθ1 =

∫
A

dθ1 =

∫
A

d(α1) =

∫
∂A

α1 = 0 (7)

where we have used the fact that a circle has no boundary.

Similarly, we can write∫ 2π

0

dθ2 =

∫
B

dθ2 =

∫
B

d(α2) =

∫
∂B

α2 = 0 (8)

However, the above integrals should not be zero as∫ 2π

0

dθ1 =

∫ 2π

0

dθ2 = 2π (9)

Therefore, dθ1 and dθ2 are examples of one-forms that are closed but not exact. Notice that

they are so because the coordinates θ1 and θ2 are periodic. This periodicity is unavoidable

if we try to define coordinates on a torus. Also, notice that this unavoidability depends on

the topology of the background on which the differential forms are defined.

We call dθ1 and dθ2 the de Rham cohomology elements of H1
dR(Torus), where the “1”

denotes a one-form and the “dR” denotes “de Rham.” Cohomology counts the number of

forms that are closed but not exact under an operator Q that satisfies Q2 = 0, and de Rham

cohomology is given by the case where Q is an exterior derivative d. As there are two linearly

independent elements in H1
dR(Torus), we say H1

dR(Torus) = R2 where the “2” here denotes
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the number of linearly independent elements. In other words, the vector space spanned by

dθ1 and dθ2 have two dimensions.

What would H0
dR(Torus) be? A constant function c satisfies dc = 0 which means that it’s

closed, but it’s not exact since there is no object b that would satisfy db = c since b must be

a “−1 form” and there is no such thing as a “−1 form.” Therefore, a constant function is

the basis of the de Rham cohomology of 0-forms and is the only basis. So,

H0
dR(Torus) = R1 (10)

Then, what would H2
dR(Torus) be? Consider the fact that naturally any two-forms must

be expressed in terms of the wedge product of two one-forms. Therefore, we can denote a

two form β as:

β = k(θ1, θ2)dθ1 ∧ dθ2 (11)

So the basis of the two-form on a torus is dθ1 ∧ dθ2. It is easy to see that it is closed.

d(dθ1 ∧ dθ2) = ddθ1 ∧ dθ2 − dθ1 ∧ ddθ2 = 0 ∧ dθ2 − dθ1 ∧ 0 = 0 (12)

However, it is not exact, since neither dθ1 nor dθ2 is exact. (If they were, we would be able

to express dθ1 ∧ dθ2 as d(θ1 ∧ dθ2) or d(−dθ1 ∧ θ2). Therefore, H2
dR(Torus) is R1.

Now, what would be the de Rham cohomology elements of Rn? (Rn is the usual n-

dimensional Euclidean space.)

H0
dR(Rn) = R1 from the same reason as H0

dR(Torus) = R1; a constant function is the basis

of H0
dR(Rn) = R1. However, Hk

dR(Rn) = R0 for k other than 0 since the natural variables

specifying the position of Rn can always be assigned non-periodically.

Now let’s calculate the de Rham cohomology of one more complicated example. As a first

step to this end, notice that a torus is the direct product of two circles. In other words, a

point on a torus is specified by its location in the first circle A and its location in the second

circle B. Recall that the coordinates were θ1 and θ2. We express this fact as

torus = S1 × S1 (13)

where S1 denotes the circle. Similarly, we can define a 4-dimensional torus T 4 by S1 × S1 ×
S1 × S1.

Now let’s calculate the de Rham cohomology of this manifold. First of all, H0
dR(T 4) = R1

from the same reason as before: its element is a constant function. Second, H1
dR(T 4) = R4.

The four elements are dθ1, dθ2, dθ3, and dθ4. Third, H2
dR(T 4) = R6. The six elements are

dθ1 ∧ dθ2, dθ1 ∧ dθ3, dθ1 ∧ dθ4, dθ2 ∧ dθ3, dθd2θ4, and dθ3 ∧ dθ4. Fourth, H3
dR(T 4) = R4. The

four elements are dθ1 ∧ dθ2 ∧ dθ3, dθ2 ∧ dθ3 ∧ dθ4, dθ1 ∧ dθ3 ∧ dθ4, dθ1 ∧ dθ2 ∧ dθ3. Finally,

H4
dR(T 4) = R1. The only element is dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4.

Now, let me explain what the Künneth formula is. If an n-dimensional manifold M for

which we want to calculate the de Rham cohomology is the direct product of two smaller
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dimensional manifolds, say k-dimensional manifold X and (n − k) dimensional manifold Y ,

the de Rham cohomology of M is given by the following formula:

Ha
dR(M) =

∑
a=b+c

Hb
dR(X)×Hc

dR(Y ) (14)

Let’s see why this should be the case. Let’s say a = 3. Then, we can easily see that a 3-

form on M can be expressed as the sum of wedge products consisting of a 0-form in X with a

3-form in Y , a 1-form in X with a 2-form in Y , a 2-form in X with a 1-form in Y , or a 3-form

in X and a 0-form in Y . This is not a rigorous proof because we need to know exactly why

cohomology elements not expressible as the wedge product of a differential form of X and a

differential form of Y don’t exist. If you read Superstring theory, Vol 2 by Green, Schwarz,

and Witten, you will learn the reason why. You need to understand harmonic forms, which

are explained there. In any case, the Künneth formula was rigorously proved by Künneth in

his doctoral thesis in 1922.

Problem 1. Calculate the following:∫
B

dθ1 =?,

∫
C

dθ1 =?,

∫
A′
dθ1 =?,

∫
A

dθ2 =?,

∫
C

dθ2 =?

As we have gained some intuitive understanding of de Rham cohomology, let me give you

its mathematically rigorous definition.

Let M be a differentiable manifold. Then, the rth de Rham cohomology group Hr(M)

is an equivalence class defined by

ω ∼ ω + dψ (15)

where ω is a closed r-form and ψ is an (r − 1)-form.

In our later article “The duality between de Rham cohomology and homology” we will

show that H1
dR(Torus)= R2 is indeed true following from the above definition.

Final comment. After learning de Rham cohomology group, I asked a string theorist,

whether de Rham cohomology is used to describe the complicated geometry in string theory

such as in extra dimensions. He said that it was, but also commented that cohomology

has other applications than in geometry. As I mentioned earlier in this article, whenever

an operator Q satisfies Q2 = 0, we can define cohomology. As this condition implies that

Q-exact form is always Q-closed form, we can define the equivalence relation ω ∼ ω +Qψ.

If I use the language of mathematicians, a cohomology group is given by the quotient space

ker Q/Im Q. Quotient space “/” means that you reduce the original space by an equivalence

relation. ker Q, called the “kernel of Q,” is a vector space V that satisfies Qv = 0 for v ∈ V
(i.e. v is an element of V ), while Im Q, called the “image of Q,” is a vector space given by

Q(V ).

Summary

• A closed form w is a form such that dw = 0.
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• An exact form w is a form such that w = df for some f .

• d2 = 0 implies, an exact form is always a closed form.

• De Rham cohomology tells us how many more closed forms there are than exact forms.

• The rth de Rham cohomology group Hr(M) is an equivalence class defined by

ω ∼ ω + dψ

where ω is a closed r-form and ψ is an (r − 1)-form.
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