
The duality between de Rham cohomology and homology

In this article, we will show that the rth homology group Hr(M) and the rth de Rham

cohomology group Hr(M) form a dual space. Let c ∈ Hr(M), and ω ∈ Hr(M). Then, the

dual map (i.e., a dot product between c and ω) is given by

〈c|ω〉 =

∫
c

ω (1)

It is easy to check that this map satisfies linearity. i.e.,

〈c|ω1 + ω2〉 =

∫
c

(ω1 + ω2) =

∫
c

ω1 +

∫
c

ω2 = 〈c|ω1〉+ 〈c|ω2〉 (2)

〈c1 + c2|ω〉 =

∫
c1+c2

ω =

∫
c1

ω +

∫
c2

ω = 〈c1|ω〉+ 〈c2|ω〉 (3)

We also need to check that this linear map is well-defined. i.e., that it doesn’t depend on

which closed forms you choose to evaluate (1) if they are in the same equivalence class (i.e.,

if they differ by an exact form). For example, let’s say ω′ = ω + dψ. Then,

〈c|ω′〉 =

∫
c

ω +

∫
c

dψ =

∫
c

ω +

∫
∂c

ψ =

∫
c

ω = 〈c|ω〉 (4)

where we used Stoke’s theorem, and the fact that ∂c = 0 (i.e., c is a cycle.)

Similarly, we need to check that the linear map doesn’t depend on which cycles you choose

to evaluate if they are in the same equivalence class (i.e., if they differ by a boundary). For

example, let’s say c′ = c+ ∂d.

〈c′|ω〉 =

∫
c

ω +

∫
∂d

ω =

∫
c

ω +

∫
d

dω =

∫
c

ω = 〈c|ω〉 (5)

where we used Stoke’s theorem, and dω = 0 (i.e., ω is a closed form).

So, the linear map (1) is well-defined. Thus, de-Rham cohomology group Hr(M) is dual

to homology group Hr(M); their dimension is the same.

I also want to mention that the exterior derivative is the “transpose” of boundary operator

and vice versa. To see this, note that Stoke’s theorem says

〈∂c|ω〉 = 〈c|dω〉 = 〈c|d|ω〉 (6)

Thus, 〈∂c| = 〈c|d which implies

|∂c〉 = |dT c〉 (7)

In complex vector space, it would have been the Hermitian conjugate instead of the transpose,

but here we are dealing with real vector space.
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We will now show that H1
dR(Torus)= R2. See Fig. 1 in “De Rham cohomology.” An

one-form on a torus can be written as

ω = f(θ1, θ2)dθ1 + g(θ1, θ2)dθ2 (8)

As a cohomology element, we consider a closed one-form, i.e., dω = 0, which gives a certain

relation between f and g, but its explicit form is not important in our argument.

Anyhow, consider the following integration:∫
A(θ2)

ω = a1(θ2) (9)

where A(θ2) is an A-cycle located at θ2, such as the small dotted circle that passes C in the

figure. (Problem 1. Show that a1(θ2) doesn’t depend on θ2 if dω = 0.)

Thus, we can choose any θ2 to calculate (9). Therefore, we can just write∫
A

ω = a1 (10)

where we set a1 = a1(θ2) as it doesn’t depend on θ2, and choose an arbitrary θ2 and express

A = A(θ2).

Problem 2. Show that the above integration doesn’t depend on which ω you choose, if

they are in the same equivalence class.

So, once you choose f(θ1, θ2), then a1 is determined. They are related by∫ 2π

0

f(θ1, θ2)dθ1 = a1 (11)

Now, let me ask you a question. If we have f and f ′ that satisfy∫ 2π

0

f(θ1, θ2)dθ1 =

∫ 2π

0

f ′(θ1, θ2)dθ1 (12)

then can we say the following?

f(θ1, θ2)dθ1 ∼ f ′(θ1, θ2)dθ1 (13)

Put slightly differently, if ω and ω′ have the same coefficients for dθ2 part (i.e., g(θ1, θ2) =

g′(θ1, θ2)), and they have the same a1 = a′1 (i.e., satisfies (12)), does this imply [ω] = [ω′]?

If [ω] = [ω′], then a1 = a′1 is satisfied is certain. You have shown it in Problem 2. What

is not certain is if a1 = a′1 is satisfied, [ω] = [ω′] (assuming ω and ω′ have the same g(θ1, θ2)).

If a1 = a′1, we have ∫
A

ω − ω′ = 0 (14)

More explicitly, it means ∫ 2π

0

(f(θ1, θ2)− f ′(θ1, θ2)) dθ1 = 0 (15)
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Assuming (14) and g(θ1, θ2) = g′(θ1, θ2), if we can find ψ that satisfies

dψ = ω − ω′ (16)

then we indeed have [ω] = [ω′]

Problem 3. Show that such ψ exists by explicitly constructing one.

So, we just proved that a1, the integration of ω over A-cycle determines the equivalence

class of ω, apart from the part g(θ1, θ2)dθ2.

Similarly, if we say ∫
B

ω = a2 (17)

then, a2 determines the equivalence class of ω, apart from the part f(θ1, θ2)dθ1.

In conclusion, a1 and a2 determine the equivalence class of ω. In other words, [ω] is

specified by two numbers. Thus, we just proved H1
dR(Torus)= R2.

Final comment. As promised in “Topology, the Euler characteristic, and the Gauss-

Bonnet theorem,” we will present yet another way to calculate the Euler characteristic. To

this end, we first need to define betti number. br(M), the rth betti number of M is defined

by the exponent of Z in the rth homology group Hr(M). For example,

H0(Torus) = Z1, H1(Torus) = Z2, H2(Torus) = Z1 (18)

implies

b0(Torus) = 1, b1(Torus) = 2, b2(Torus) = 1 (19)

Now, I will another definition of the Euler characteristic without proof. χ(M), the Euler

characteristic of n-dimensional manifold M is given by

χ(M) =

n∑
r=0

(−1)rbr(M) (20)

Problem 4. Using this formula, check that the Euler characteristic of torus and sphere

are 0 and 2, respectively.

Summary

• Homology group and cohomology group form a dual space, by the linear map

〈c|ω〉 =

∫
c

ω

• br(M), the rth betti number of M , is defined by the exponent of Z in the rth homology

group Hr(M).

• χ(M), the Euler characteristic of n-dimensional manifold M , is given by

χ(M) =

n∑
r=0

(−1)rbr(M)
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